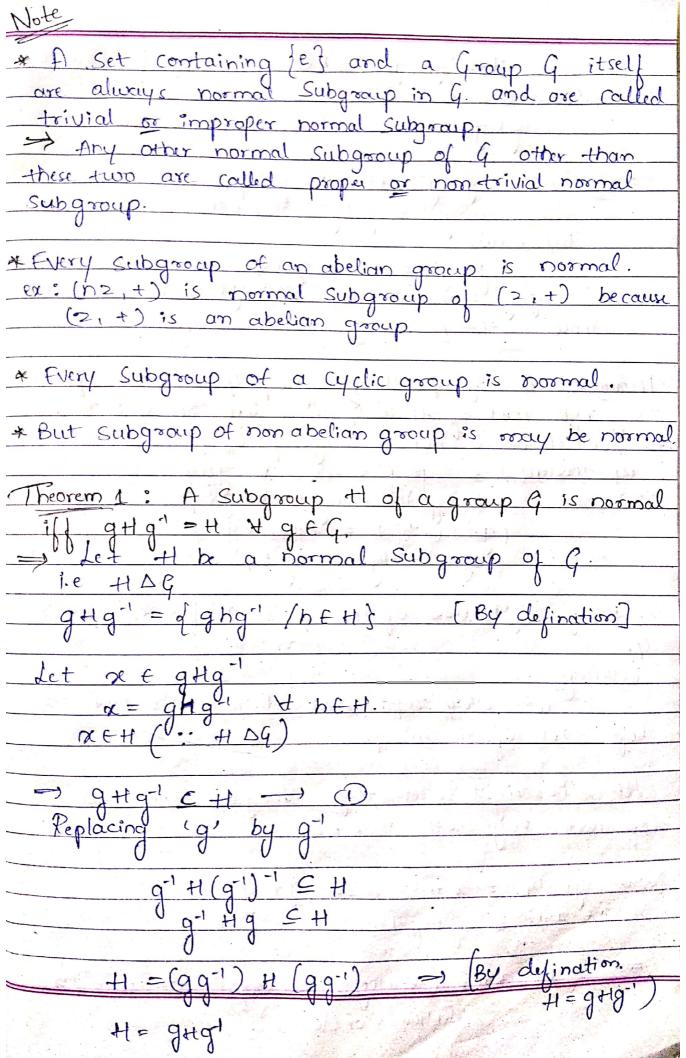
B.Sc. IV SEMESTER

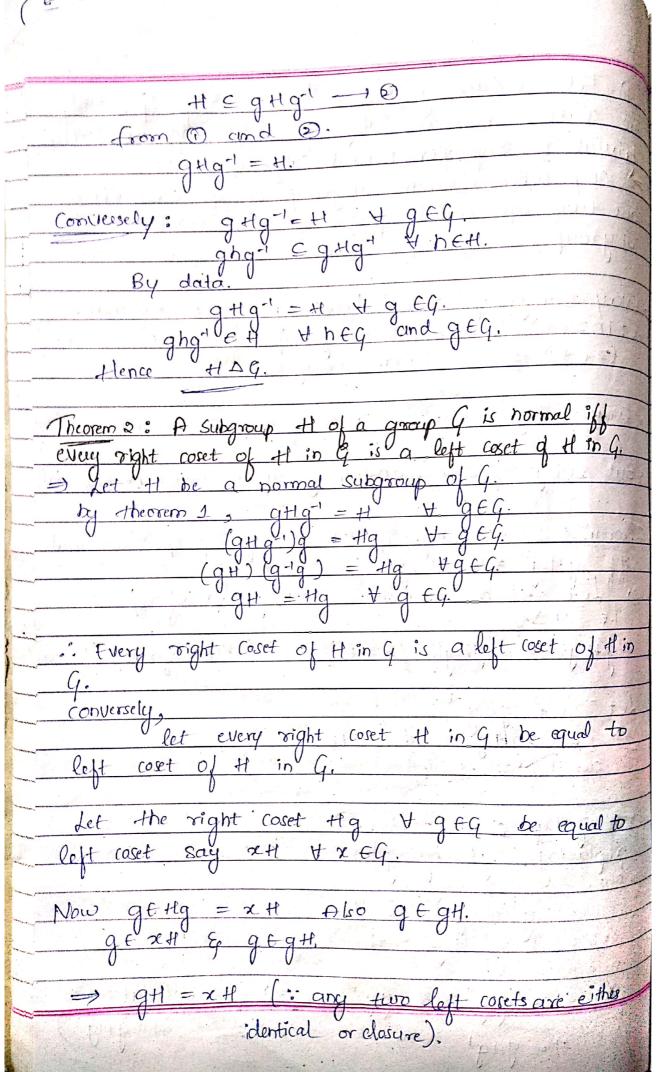
Mathematics PAPER – II

GROUP THEORY, FOURIER SERIES AND DIFFERENTIAL EQUATIONS

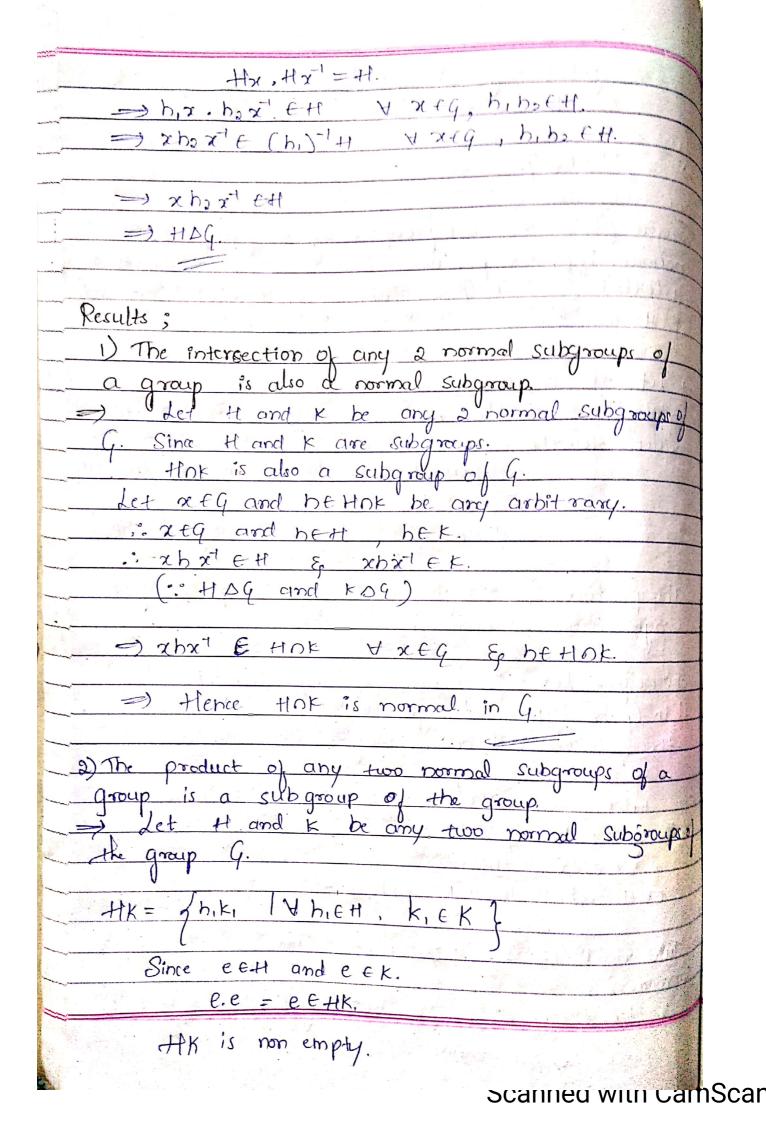
UNIT-I

GROUP THEORY-III


Syllabus:

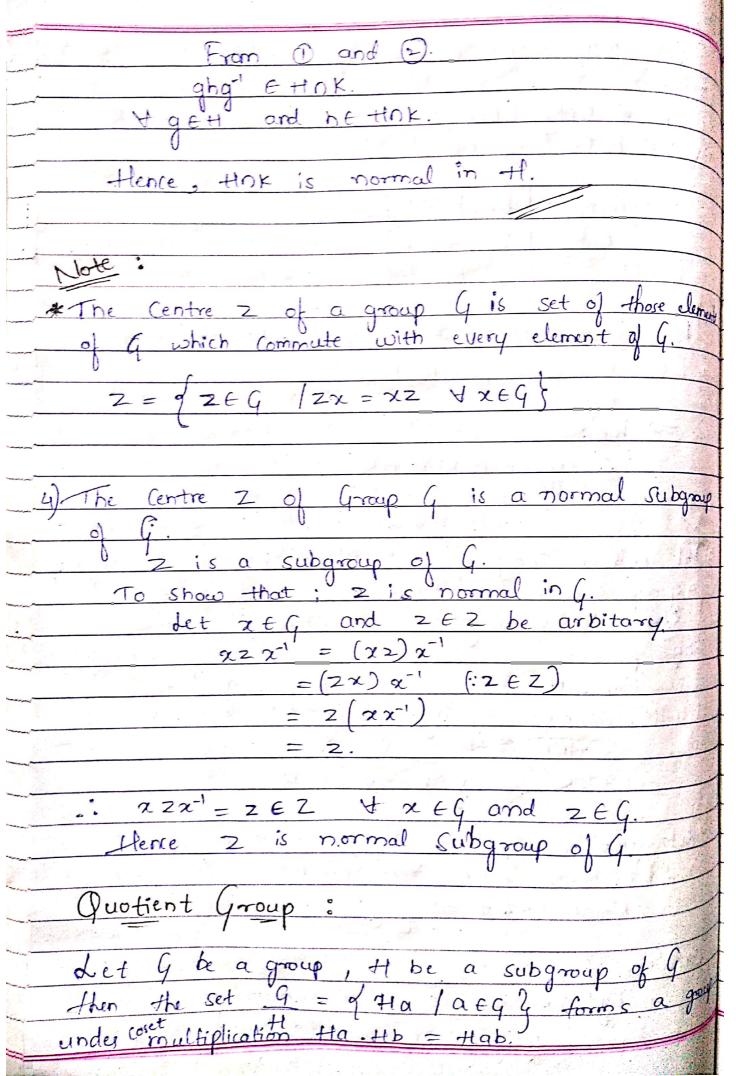

Unit – I

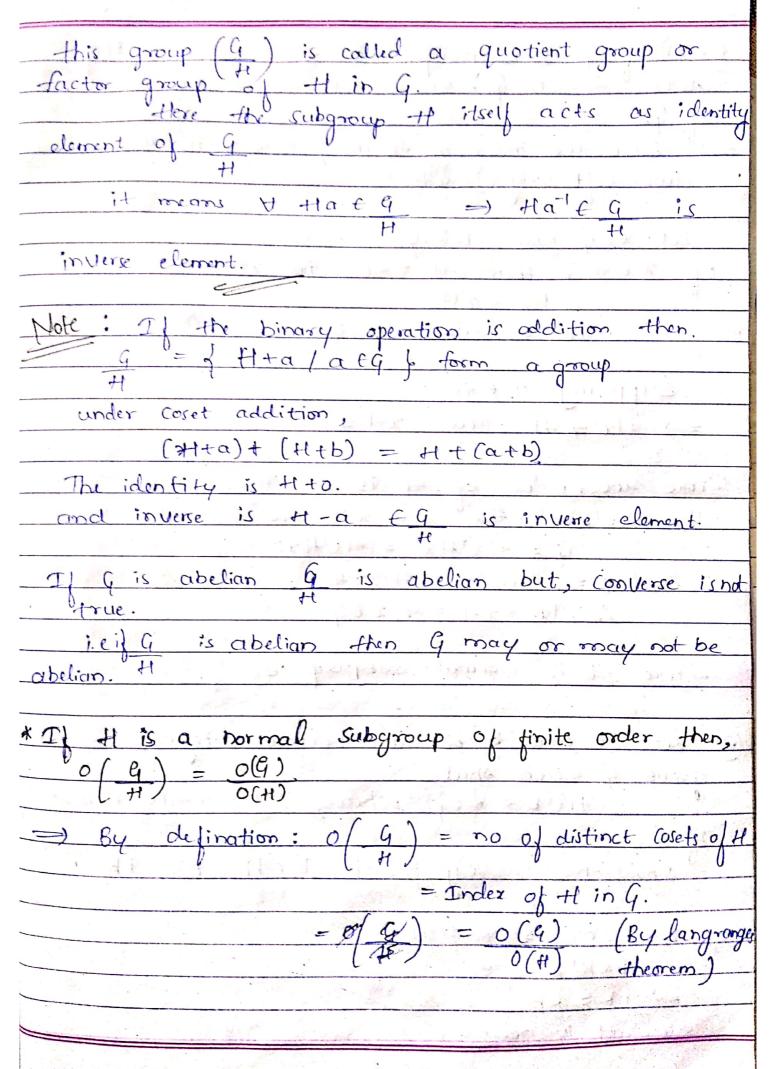
Normal sub-groups, Quotient groups, Homomorphism and Isomorphism of groups, Kernel of Homomorphism, Fundamental theorem of Homomorphism.

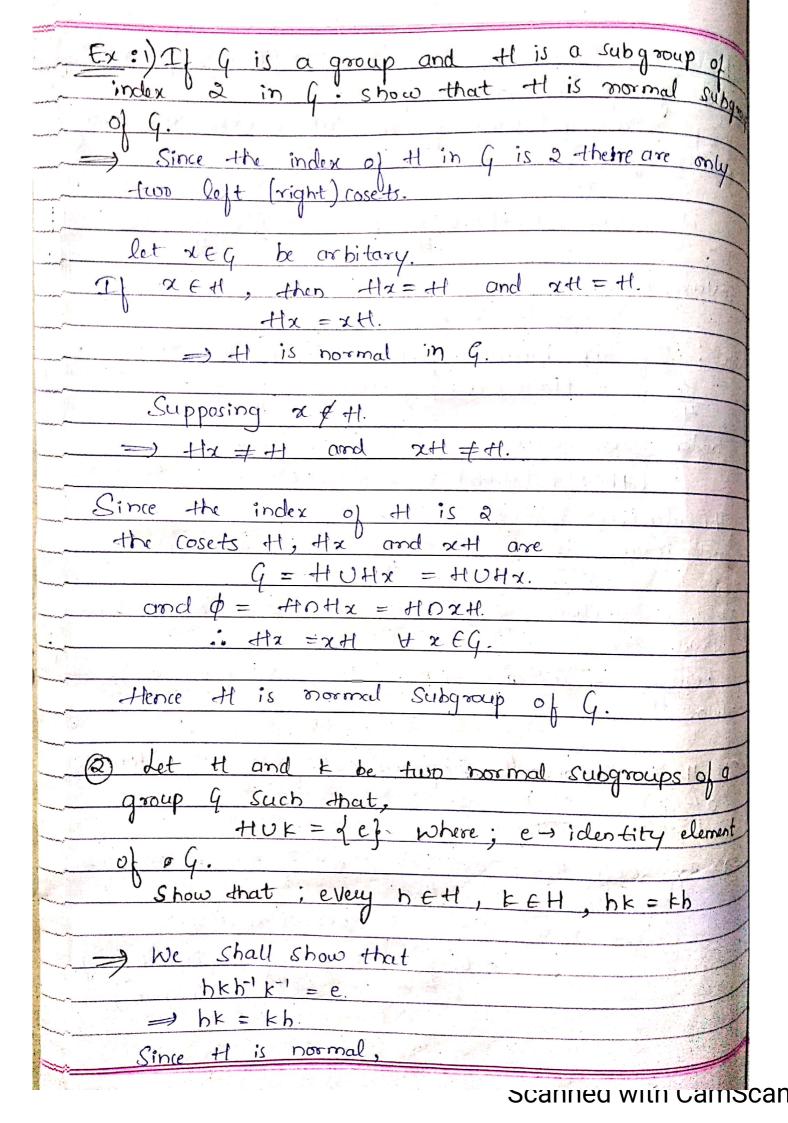

-10HRS

```
10/01/3036
                 Group theory - III
  Normal Subgroup: (Invariant Subgroup)
  .. RC = L.C.
      Ha=aH Yafg
                          => ha (a-1) = (ah)a-1
            h, (aa') = ah, a'
           h, (ee) = ahaa" = h, = ahaa"
                           y hell.
    ination of Mormal Subgroup: A Subgro
t of group 9 is said to be normal subgro
Gil ghg! EH + 9 EG and hell is
denoted by HAG and read Has His
                                         Scanned with CamScar
```


gH = Hg + g & G. g+19-1 = +1 · HDG. Subgroup Ho) a group the product of any in be a normal be any Consider Ha. Hb = H (aH)b. " His normal Ha=aH H (Ha)b = (HH) ab : H is a subgroup the H=H : The product of 2 right cosets of Conversely, Let the product of any 2 right cosets right coset. two right coset Hx. Hx is again a right cosets : x E HX Ext E HX! e=xxt E Hx . +fxt is right coset of H. has an element Two right cosets, HEHZ-HXT Common. .. Hx. +1x-1 = +1 (Since two right cosets of H are either equal or clisjoint.)

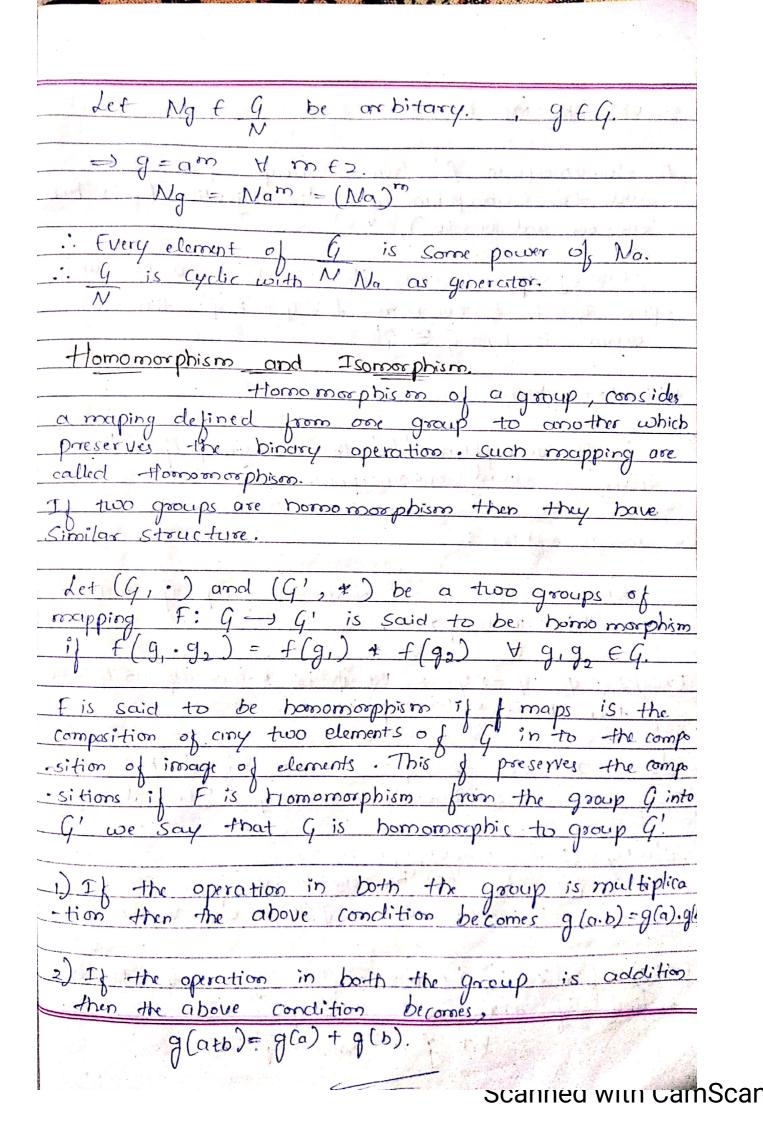

det x, y & H.K be arbitary. Consider, $\frac{\chi y^{-1}}{y} = \frac{(h_1 k_1) (h_2 k_2)^{-1}}{(h_2 k_3)} \frac{(h_1 h_2 \in H)}{(k_1 k_2 \in H)} \frac{(h_1 h_2 \in H)}{(k_1 k_2 \in H)}$ = (h, h2) [h2 (K, K2) h2 = h.k (: h=h,h=1 k = h2 (K, K2") (h2") Now, beet = beeg, and kiks 'EK. b2(K, K, -1) b; 1 EK = kek : xy = b. k & HK. Here His is a subgroup of G. of a group G. then R HOK is normal in the Subgroup) Since H and K are subgroup of G then,


HOK is also a subgroup of G


HOK CH : Hok is a subgroup of H. Let get and hettok be arbitary.

hettok => hett and hek. Kand KAH = ghg EK -10 Consider, ng-1 ex as the is a subgroup.

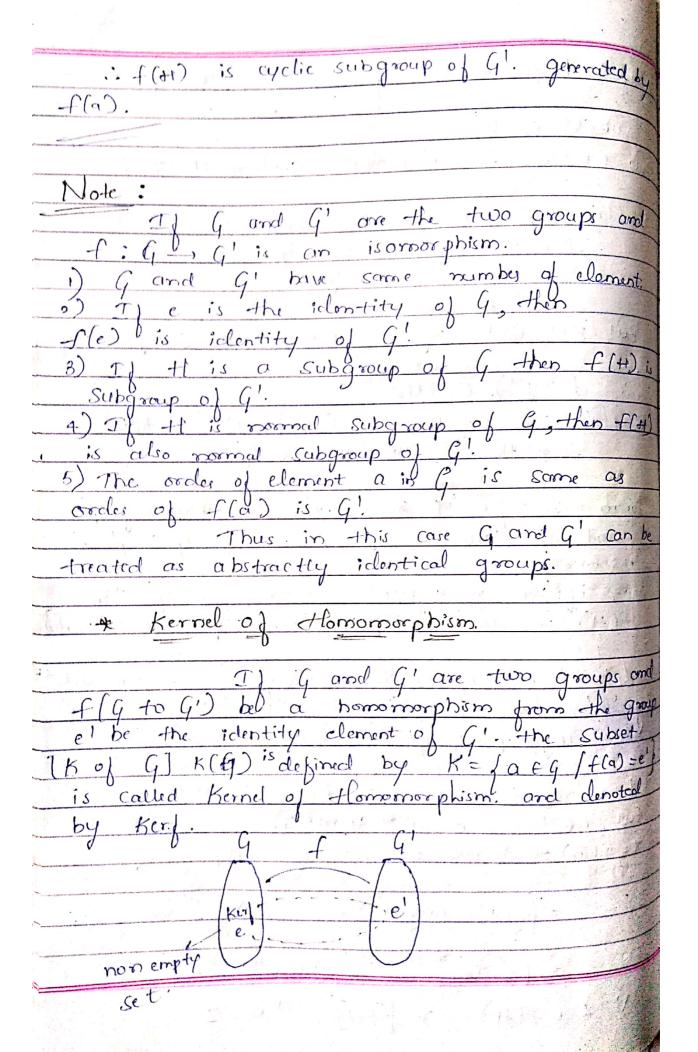
ghg-1 ex -> (: gen, hg-1 e



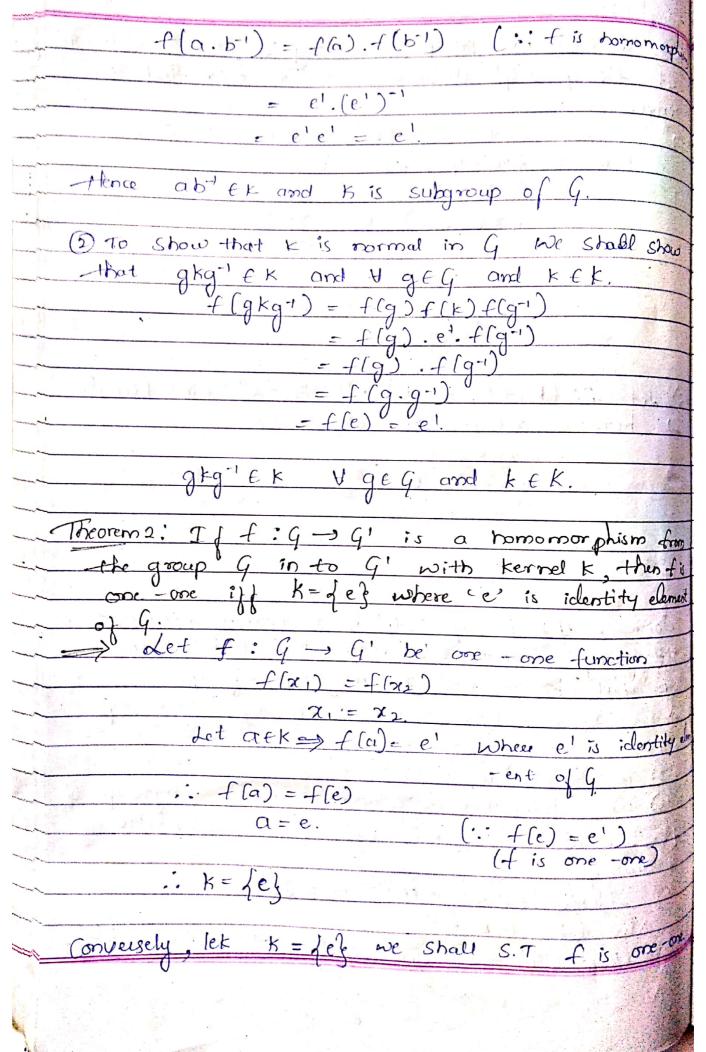
kb'b' EH Y hEH and kEK CG
Davin K is normal [:H is Subgroup]
The state of the s
hkh-1 EK H KEK and hett C.g.
Now,
KIEK and hkhiek.
=> hkh-1k-1 EK [Since K is subgroup]
hkhiki E +tok = fe} [By Data]
=> hkh'k'=e => hk=kh
Wheth and kek.
the state of the s
3 ST every quotient group of an abelian group
is abelian.
=> Let G be abelian group and N be a normal
Subgroup of G.
Let Na, No E G be orbitary.
N
(Na)(Nb) = Nab.
₩ N ba
$= Nb \cdot Na (:ab = ba)$
The state of the s
= 9 9 is abelian.
N-4 Maria Ma
4) S.T Every factor group of Cyclic group is
Let 'G' be a cyclic group with generator à
E 'N' be a normal subgroup of G
Scanned With Camsca

```
We shall show that factor group 4
this group, we shall show that
generated by 10-set Na.
          Nam = (Na)m
Case - I
        Let m=0.
                        Ne = N.
        Nam = Nao
                        Identity
               Nam = (Na
Case - II
         Let m be a true
Case - III
                be
            m
                    a regative
  Let
           n - is the integer.
  where
        (Na)m = Na-n
               Nat. Nat. Nat
               (Nai)
                            [: NAG
                     [Na)m
                true
                       in
                                Cases
                           all
```


ISOMORPHISM:
A from marphism & from a group g into G'
- A from o morphism 'f' from a group G into G'is said to isomorphism if is bijection (fisher)
one-one and on to)
The second secon
Two groups quand q' are said to be isom
-phic if 7 isomorphism $f: G \to G'$, then we denote it by $G \cong G'$
denote it by $G \cong G'$
The self by an and an analysis
* Endomorphism:
A Homomorphism of from a group of into itself is called endomorphism.
itself is called endomorphism.
* Automorphism:
An isomorphism 'f' from a group G onto it
is called automorphism.
is cause carronny .
Ex:i) It $\phi: G \rightarrow G$, If ϕ is homomorphism G into
$=\frac{Fx:i)I}{f}$ $\phi: \cdot G \rightarrow G$, $Id \phi$ is homomorphism G into $=\frac{Fx:i}{f}$ then ϕ is endomorphism.
$soln \implies Let \phi: G \rightarrow G'$ be defined by
$\frac{\text{soln}}{\text{soln}} \Rightarrow \text{Let} \phi: G \rightarrow G' \text{ be defined by}$ $\frac{\phi(\alpha)}{\text{soln}} = e' \forall \alpha \in G. \text{(trivial matrix)}$
clearly of is homomorphism.
let a, b ∈ G be arbitary. $\phi(a) = e'$, $\phi(b) = e'$. \forall a, b∈ G
$\phi(a) = e', \phi(b) = e'. \forall aibey$
1. 100
Ex:2) If $(z, +)$ i.e (Group of integers under addition) and if $f(z) = \partial x \forall \ x \in G$.
and if $f(x) = \partial x \ \forall \ x \in G$.
P.T f is homomorphism.

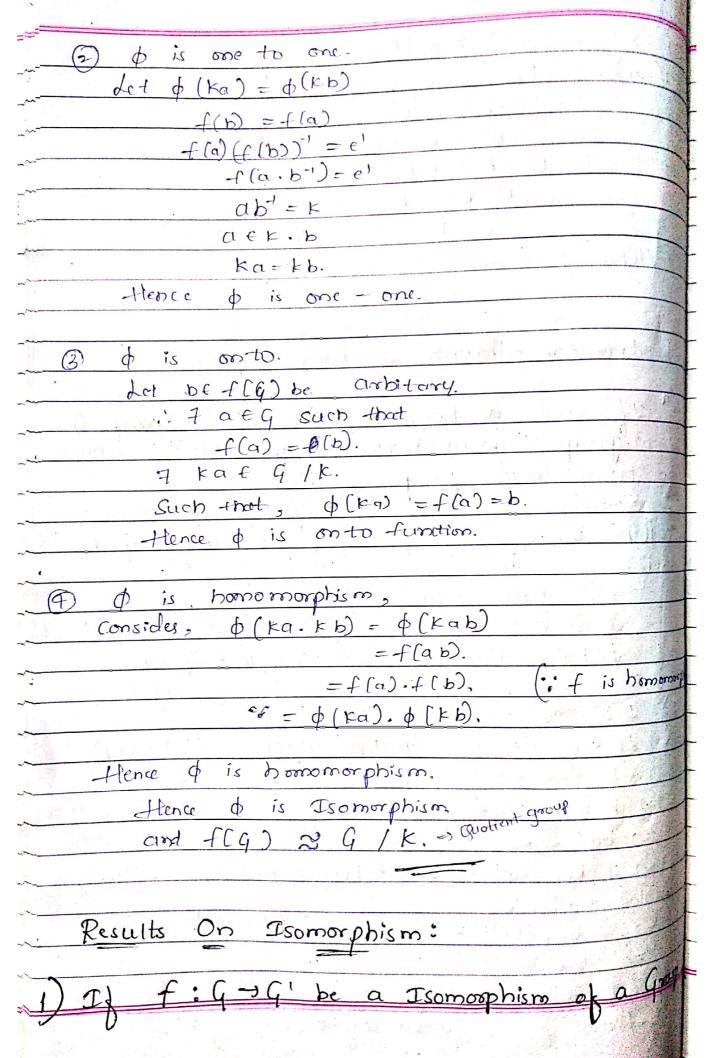

f(x+y) = a(x+ay)= & (x+4), 2x +24. $f(\alpha \cdot y) = f(x) + f(y)$ Ex:3) If $f:(R,+) \rightarrow (R^+, \cdot)$ be defined by $f(x)=2^{x}$ $\forall x \in R$, then verify f is homo remorphism or not? $f(x) = 3^{x}, f(y) = 3^{y}, \chi + y \in \mathbb{R}.$ f(x+y) = f(x).f(y) $f(x) = \log x \quad \forall x \in \mathbb{R}^{+}, \quad \forall \text{ defined by}$ or not. (R, +) defined by

f(x) = log x \ \tau \times \text{ Perify } f is homorosoph $= \log x \quad f(y) = \log y$ = log xy. logy f (x.y) log x + log y f(xy) = f(x) + f(y). : Let G and G' be two groups and
: G -> G' homomorphism, then.
identity of G theo f(e) is identity of G

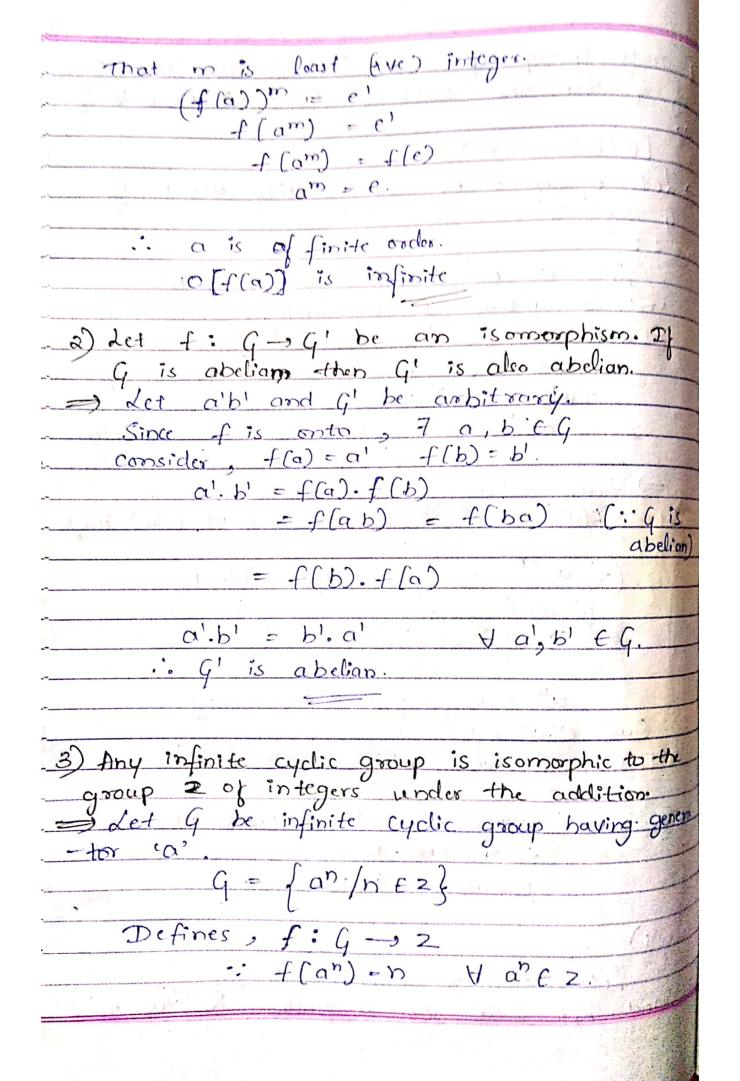

caps identity of G into identity of G') of maps

Let e & G be identity of G. f(e.e) = f(e) and f(e).f(e) = f(e.e) f is homomorphism, f(e)∈G. Since · f(e.e) = f(e).f(e) If e' & G' is identity element of G! then $f(e) \in G'$, $f(e) \cdot f(e) = f(e)$: f(e) f(e) = e' f(e)f(e) = e'. thus fled is identity of el Theorem 2: If G and G' are two groups of fift b is a homomorphism, then It at is a in 9, then f(at) = Ya EG preserves inverses Proof: for a +G 7 at +G Such that a.a.e. : f(a.ai) = f(e) + acg But f(a) f(a') = f(a.a') α d is homomorphi $f(a) \cdot f(a^{-1}) = f(e)$ where e is identity of 4. : + (a") = [f(a)]-1 which is inverse of tas in G! Theorem 3: If G and G! Dec two groups and fift is a homomorphim. then, if it is a subgroup of q. then f(H) is Subgroup of G'. (f Sends subgroup into Subgroups

```
f(H) = \int f(x) \in G' / x \in H  is
        Now
   Subset
     e = +1
                 f(e) & f(+1)
                              and f(H) + p
let f(a), f(y) & f(+1)
                        then xiy est.
                        f(xy-1)
  But
                              as His
                         +1
                                        Subgroup
                      = f(x) [f(y)] 1 c f(n)
                     Subgroup o
                                  Subgroup
                   -two groups
   homomorphism.
                   a cydic
                            Subgroup
              Cyclic group of
                    cyclic Subgroup
                             above theorems
                  then x = f(h)
 let
                 h = am
                          ymEZ.
       hEH
 But
 x=f(h) = f(am)
              (a).f(a).f(a) --- f(a).
              f(a)
                                Ymez.
                  \alpha = [f(\alpha)]^m
   Yxef(H)
```




```
Examples:
1) If (2, +) i.e group of integers under addition det f: G \to G' defined by f(x) = 2x find its
                       fx ∈ (2,+), 2x = 0 €
                       \{x \in (2,+), x = 0\}
 2) Let f: (R,+) -> [R+, .), f(x) = ed. Find kernal.
 \rightarrow Kerf = \int x \in G, f(x) = e^{ix}
              = \begin{cases} \chi \in \mathbb{R}, & e^{\pi} = 1 \end{cases}
= \begin{cases} \chi \in \mathbb{R}, & e^{\pi} = e^{\circ} \end{cases}
= \begin{cases} \chi \in \mathbb{R}, & \chi = 0 \end{cases}
Theorem: If f: G -> G' is a homomorphism from
the group G in to G' with Kernel K then:
Prove that K is normal Subgroup of G.
 > We shall prove this theorem by two steps
   1) K is Subgroup of G.
     2) K is normal in G.
 3) By defination of kerf, K is subgroup of q. .. f(e) = e' where e and e' are identities of
          Hence eck Trus K = p.
     Now let as b FK.
        -then f(a) = e' and f(b) = e'
```



$\det f(a) = f(b)$
$f(a) \cdot [f(b)]' = f(b) \cdot [f(b)]'$
$-f(a \cdot b^{-1}) = e'$
$0.b^{-1}=e$
$(a \cdot b^{-1})b = e \cdot b$
a(b',b)=b.
a = b.
Hence f is one -one.
The state of the s
¥ C 1
* Fundamental theorem of homomorphism:
in to group G' with Kernel k then f(G) is is omor - phic to a factor group G / K"
chic to group 4 with Kernel k then f(4) is is omor
- phic to a factor group G/K." Since f: G -> G' is a homomorphism set
of f(9) is a Subgroup of 9'. Hence group by
itself.
We shall define the map.
Ø: G/K → F(G).
\$(Ka) = f(a) Yafq, Ka & G/K.
and the second of the second o
1) \$\phi\$ is well-defined.
Let be ka we shall show that f (a) = f(b).
btka => b= k,a, + k+k.
$\Rightarrow b = k_1 \alpha$
3) ba' = K,
$\rightarrow f(k_1) = e'(: k \in ker f = k).$
$\Rightarrow f(ba^{-1}) = e'$
$\Rightarrow f(b), f(a') = e' \Rightarrow f(b), [f(a)]' = e'$
$\Rightarrow f(b) = [f(a)]e'$
f(b) = f(0)
Hence & is well defined

Scanned With CamScan

Scarineu with CamScar

G onto Group G' and 'a' is any element of G then the order of flad equal to order of [cofla) = o (a)] =) Let e and e' be the identity elements of G and G'case 1: Let 'a' be a finite order say 'n'. Such that an = e Now an = e f(an) = f(e) (f(a))" = e' (: f is homomorphism) => f(a) is also finite order. Let off(a)] = m, i.e m is loast (tve) integer $(f(a))^m = e^l$... m divides n. $(f(a))^m = e^l$ f (am) = f(e) $a^m = e$ is one-one? But O(a) = n. Thus (n' divides 'm'. in m divides in and, in divides 'm' Hence m=n. $O(f(\alpha)) = O(\alpha).$ Case ii) Let 'a' be an infinite order. and det f(a) be a finite order say

i) - f is homorphism.

(onsider, - f (am. an) = - f (am+n) f(am.on) = f(am) + f(an). $f(a^m.a^n) = f(a^m) + f(a^n)$ Hence of is homomorphism iii) onto $\forall n \in \mathbb{Z}$, $a^n \in \mathcal{G}$, \mathcal{G} being infinite group $\forall n \in \mathbb{Z}$, $\forall a^n \in \mathcal{G}$ Such that, $f(a^n) = n$. i. f is onto. f(an) = f(am)is one - one. Hence f is isomorphism.

UNIT-II

FOURIER SERIES

Syllabus:

Unit – II

Periodic functions, Fourier series of functions of period 2π and 21. Fourier series off odd and even functions, Half range sine and cosine series.

-10HRS

Fourier Series.

A function f(x) is said to be an evenful if f(-x) = f(x).

ex: $x^2, x^4, --\cos x$, $\cos mx$. $\cos nx$, $\sin mx$. $\sin nx$ ex: $x^2, x^4, --\cot x$ are all even function $2n^4$, $3\sec x$, $--\cot x$ is said to be an odd.

A function f(-x) = -f(-x)

function. f(-x) = -f(x) $y^3, y^5, --.sin^x, cosm^x. sinny, 2x^3-3x+4sin^x$ etc. are all odd for.

Periodic Functions.

Periodic Functions.

A function f(x) is said to be periodic if it

A function f(x) is said to be periodic if it

is defined for all real nos x's there is a

the integer T, Such that

the integer T is called period of the funct

f(x+T) = f(x)

The member T is called periodic functions of

k (cont), sin x, cos x are periodic functions of

k (cont), sin x, cos x are periodic functions of

period 2T.

Sin(x+2T) = Sinx, cos(x+2T) = cosx

Also f(x)=K, f(x+2T)=K

en: Sin (2x+x) = Sin (4x+x) = -- - = Sinx Cos (2x+x) = Cos (4x+x) = ---= cosz Sin & cos x are periodic function of 2x 1. Safandx = 2 safandx

-a if faxi is even fun of 1/2 m. = 0 fun fex) is odd fun. (a) In Sin mx dx = 0 = ST cos mn duzo (2) Cos mx. Sinnx dx 20 (31 $\int_{\infty}^{\infty} \cos mx \, dx = 0 = 2 \int_{\infty}^{\infty} \cos x \, dx = 0$ $\int_{\infty}^{\infty} \cos mx \, dx = 2 \int_{\infty}^{\infty} \cos mx = 2 \left[\frac{\sin mx}{m} \right]_{\infty}^{\infty}$ $\int_{\infty}^{\infty} \int_{\infty}^{\infty} \cos mx \, dx = 2 \int_{\infty}^{\infty} \cos mx - \sin x = 2 \int_{\infty}^{\infty} (0-x)^{2} dx$ (4) Si cosmx.cosmxdx = 0 if m=n. (5) Sarsinmadx= Scosmadx 20.

·: ST COSTAN. COSTANT = JEST & COSTAN COSTAN DA = 1/2 (059x + (059x)) or 2 /2 (055x dy)

= 1/2 (059x + (059x)) or 2 /2 (055x dy)

= 1/2 (055x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) or 2 /2 (05 x dy)

= 1/2 (050x dy) o 2 /2 2 50 (1+cos4x1dx = [x+55047] 2 (5+0) - (0+0) = Ty (2) Sinmy. Sinnxdx 20 of man. NOTE: - The integrals of Sinman, cosma, cosm otox are always zero. osmx. Sinnxdx =0 (9) S. enbx dx = en (asinbx-6 cos bx)

(b) fex cub x dx = eax [a cas b x + bsinby)

(ii) Suv dx = uv, - u'v = t u'v =
(iii) Suv dx = uv, - u'v = t u'v =
(iii) Suv dx = x3 (-(05x) - (3x2) (-5inx) +6x (605x)

(iii) Sx3 inx dx = x3 (-(05x) - (3x2) (-5inx) +6x (605x)

(iii) Sx3 inx dx = x3 (-(05x) - (3x2) (-5inx) +6x (605x)

(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = t u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v = u'v =
(iv) Suv dx = uv, - u'v = u'v = u'v =
(iv) Suv dx = u'v = u

() Let for) be continou Single value d' function. Which can be expressed in the form. f(x) = ao + Sancosnx + Sbn Sinnx. 2 ge + 5 (ancosnx+bnSinnx) -(1) required range at values of the within the variables. OR Defined in the interval - T = N = T Sines & Cosineral

Of (x) (an be expanded into Sines & Cosinera) fox)= ao +(a, losx+b, cosnx+basinnx)

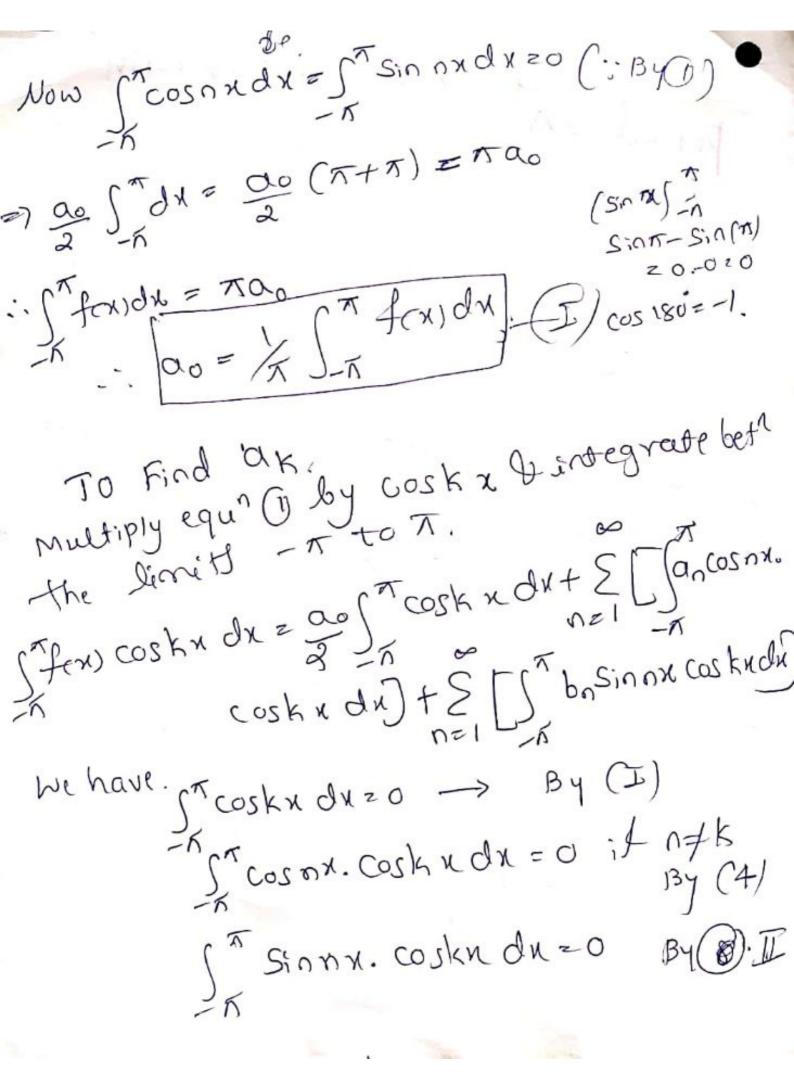
- (an cosnx+basinnx) = Yaot Siank) -A. where ao, a,, a2, --- b, b2, b3, b4 are all constant & it is obsumed that the Series on RHS is uniformly convergent Series on RHS is uniformly term integration

is possible also it is assumed that RHJ Series is convergent. Then the above expansion are series is called Fourier series are (expansion) of f(x).

(expansion) of f(x). Dividile t's condition

Dividile t's condition

A function for defined on the interval


A function be expressed in the four, en series

T-7, TJ can be expressed in the fox) = ao + Sancosnx + Sbn Sinnx. Where as, and bon are real constant, if the following conditions called Dividhet, condition for convergence are souths fied in the interval.

in the inter

Fourier Seriy of functions with let fox) be a periodic function with period 2 x b fox) be represented by fox1 = ao + San cosnx + Sbnsinnx - D To determine the coeff of ao, an Don We assume that the Seriel on the right hand convergent bit can be side is uniformly convergent in the given side is uniformly term in the given integrated term by term in the given integrated. integral.

integrating both side of (1) w. v.t x bet the limits [-1,7] weget. integral. $\int_{-\pi}^{\pi} f(x) dx = \frac{\alpha_0}{2} \int_{-\pi}^{\pi} dx + \sum_{n=1}^{\infty} \left[\int_{-\pi}^{\pi} a_n \cos nx dx \right]$ + S [S bosionx dx]

Weget Stry). cosk v du = ak Stoogkndu
: sind 1=k STACK). COSKROX = QK.T. - Tox cashroly (I) Find bk.

Again Multiplying both side of (1) by

Again Multiplying both side limits - IT to IT

Sinkx & integrate beth the limits - IT to IT

We get Stex) Sinkxdx = ao Sinkxdx+ E[Sancosnx · Sinkrdr) + S [Sansinnx Sinkrdn] We have St Sink x dxz o ST Sin nu. Sink x dxzo if n≠k SK COSNN. SINKN DRZO.

.. Weget Stan). Sinkndreby Sinkndreben - bk = / Sinkudu Thus the fourier series ofer fex) is grunty

fix)= ao + & an cosnx + & bnsinnx

fix)= ao + & nz1 = n ao= / fox) du ak= 1/5 of for), coskudu bx z / sinkudu The value of as, 9x, 6x, —— formulae X=1,2, —— given Joy cebove formulae are known of Ewler's Formulae.

Br: - Obtain the Fourier Seriy of fex)= 42 -TZXZT & fex+2x)=fcxjpT. Solu": Let fox) = au + \(\frac{1}{2} an cos nx t\(\frac{1}{2} bn \) innx ao = / S / fcx) dx. OK= ST fox). coskx dx k=1,2,3. -
OK= ST fox). coskx dx k=1,2,3. -
T x2. coskx = 2/ 5 x2 coskndy

2// 5/ 1 Tal (Sinkx) = 2x (-cosky) +2 (-sinky) 2 - 2/K (27 COS 1/K) 2 4/2 COSKA, (-1)" & bx = /x fax). Sinkx dx 2/A Sinkxdx

2/A S A(x) 2 1/3 + 5 4/2 COS N T. COS NX 2 72 + 4 F- cosx + 4 cos2x - 2 cosnap. T/12 = 1-4+/9-/16+ 4(0)20 20. put X=Tin & D f(T)= \frac{7}{3} + \frac{7}{21} \frac{4(-1)^{7}}{82} \cosn\frac{1}{8}. T2 T3 + 4 5 (-1) (-1) 1 : \$7.15) 2. 17; COSOTT = (-1)0 ガンガラ 2 4 5 / n2 / n2 25/3 = 4 5 /2 : (-1) = +1 T/2/12+/32+/32+/2+

22 12 + 8 42 (-1) COSD.X n=1 $a_{1}^{2}4_{1}^{(-1)^{2}-4}$ n=2 $a_{2}^{2}4_{4}^{(-1)^{2}}4_{2}^{2}$ 123 a324 (-1132-452 : x2= x3+ [-4 cosx +4 (052Y-4 (0534+-) 72 12 +4 [COSU + 22 (OSZX-)32 COS3KA-) 02 1/3 + 4 [-1+ /2(1)-/32(1)+--) 752-4[-1+22-132+2---] T/4×321-/22+/32-/42+--) 7/221-/22+/32-/42+ 1-1/2+1/32-1/42+--=7/3-

イングメナチラー(-1)ナダ2ー/32(-1)ナー) N-1/24 21+/22+/32+/42+-1 2x4 221+22+32+42+-~ add (2) \$(3) 12 + 1/2 2.1/2 t 2.1/32 t 2.1/52 t 1/422 [/2 t/32t/5-2+ -) 7/8 2 1+/32+/5-2+

Find ex in - x = x = x & hence prove (F) Solution let $e^{x} = \frac{\alpha_0}{4} + \sum_{n \geq 1} (a_n \cos nx + bn \sin nx) - \alpha_0$ $\alpha_0 = \frac{1}{4} \int_{-\pi}^{\pi} e^{x} dx = \frac{1}{4} \left[e^{x} \right]_{\pi}^{\pi} = \frac{1}{4} \left[e^{x} - e^{\pi} \right]_{\pi}^{\pi}$ = Multiply & devide 2 = 2 [et-et] = 2 Sinhar. : Roz & SohT [Seax cosbx dy = 1 eax Jacosbx + 65:06 xy] an= Is excosox dx = / J e cosnxdx $z = \frac{1}{K} \left[\frac{1}{1+n^2} e^{x} \cdot \frac{2}{1} \cdot \frac{\cos nx + n\sin nx}{1+n^2} - \frac{\pi}{n^2} \frac{2\cos nx + n\sin nx}{1+n^2} \right] - \frac{\pi}{n^2}$ $z = \frac{1}{K} \left[\frac{1}{1+n^2} e^{x} \cdot \frac{2}{1+n^2} \cos nx + n\sin nx} \right] - \frac{\pi}{n^2} \frac{2\cos nx + n\sin nx}{1+n^2}$ $z = \frac{1}{K} \left[\frac{1}{1+n^2} e^{x} \cdot \frac{2}{1+n^2} \cos nx + n\sin nx} \right] - \frac{\pi}{n^2} \frac{2}{1+n^2} \cos nx + n\sin nx = \frac{\pi}{n^2} \cos nx + n\cos nx = \frac{\pi}{n^2}$ = K(1+in²) [e ? cosnny y - E ? cosnny) $= \frac{1}{\pi(1+n^2)} \begin{bmatrix} (osn \pi (e^{\pi} - \bar{e}^{\pi})) \\ (osn \pi (e^{\pi} - \bar{e}^{\pi})) \end{bmatrix} (... sinh \pi = e^{\pi} - \bar{e}^{\pi})$ $= \frac{1}{\pi(1+n^2)} \begin{bmatrix} (osn \pi (e^{\pi} - \bar{e}^{\pi})) \\ (osn \pi (e^{\pi} - \bar{e}^{\pi})) \end{bmatrix} (... sinh \pi = e^{\pi} - \bar{e}^{\pi})$ $= \frac{1}{\pi(1+n^2)} \begin{bmatrix} (osn \pi (e^{\pi} - \bar{e}^{\pi})) \\ (osn \pi (e^{\pi} - \bar{e}^{\pi})) \end{bmatrix} (... sinh \pi = e^{\pi} - \bar{e}^{\pi})$

an= 25:0h7 (-1) bn= frexsinnxdn z 2sinhT = \ \[\frac{1}{1+n^2} e^x 21. \Sign x - n \cos n x y \]_T = 4 (I+n2] et (Sing/A- concosna) - et (Sing/A- concosna) - et (Sing/A-concosna) $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ $= \frac{1}{\pi (1+n^2)} \left[-n \cos n \pi \left(e^T - e^{-T} \right) \right]^{\frac{1}{2}} \frac{\sin n \pi}{\pi}$ e 2 28:0hm bnz -20(-1)? Sinha Substituting (A) wehave e7= 20+ 5 (an cosnit basinan). TXXX Sinhx + Sold Training Tours - 2n(-1) Sinhusianny & Training = K Sinha + 2 25 mha (-1) 1 cosn x - nx (-1) 5 in 0x)

=7 + Sinh T + 2 Jinh T & C-1) 2 Cosn x - nsinnxy 2 28inh# [2+ & (-1)) 2 cosnx - nsinnx) // e 2 28inh [2- 2(1)+3 (1-0)-20 (1-0)-) 25ich = 2 + 2 (-1)?

25ich = 2 | 1+n² //

Scanned by CamScanner

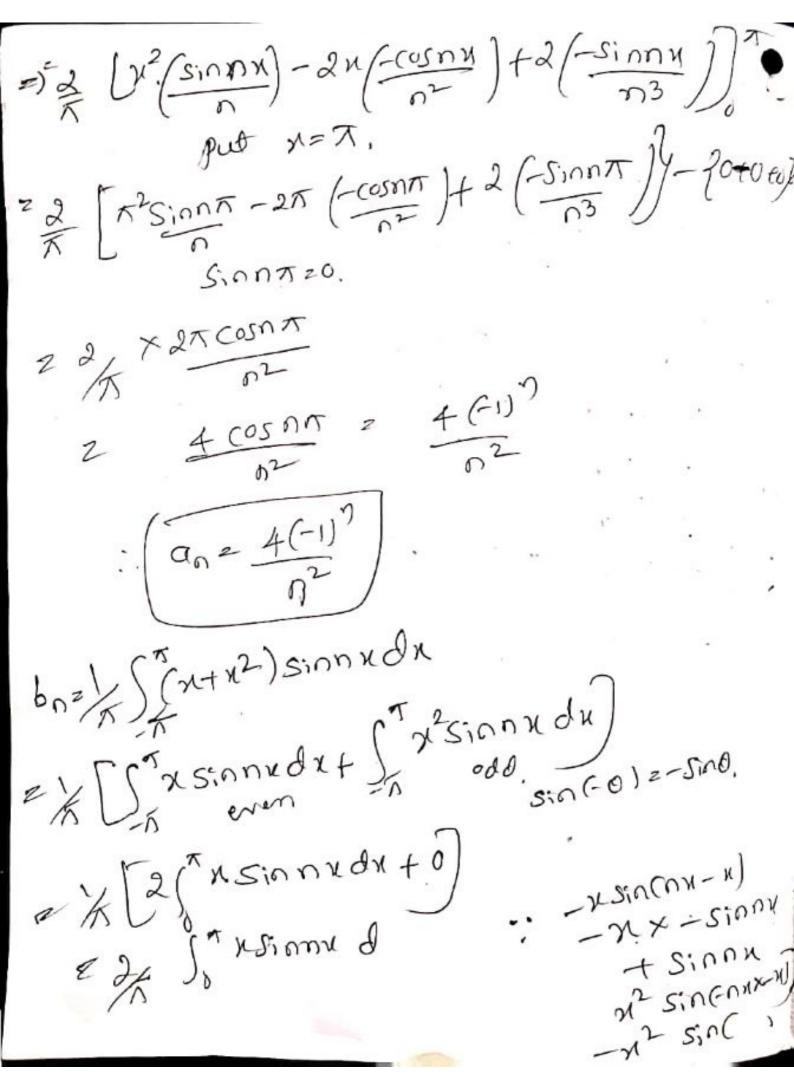
3) Obstain the Fourier Series of for) = eax - x < x < x. with period 27. 1

where fourier coeff are given by

solution The Fourier coeff are given by

ao = x Standr = x Stendar 2 de Centear = 2 sinhar : singean= XS f(x). cosnocodx Z I STE ext cornx dr ZX [eax q-acosny + nsinny 4] · : (e cosbrz ear (a cosbx + 6506x) = 4 [= ax(-acosnx) - 2x(-acosnx)] a2+ n2 a2+02 zacosna (eat - ean/ Zacosna Sinhar = 20 Sinhar (-1)

May borz dasinhar (-1) T (a2+n2) often)= eax = ao + Sancosnx + Sbn sinny ear = Sinhar + Saa Sinhar (-1) rosn 2 7π n=1 $\pi(a+n^2)$ $+\sum_{n=1}^{\infty}\frac{1}{\pi(a+n^2)}$ $\pi(a+n^2)$ $\pi(a+n^2)$ put nzo ba=1 12 Sinhy + 25inhy SC-1) 1 z Sinhy [] + 2 5 (-1)) 5,0hx 2 1+ 2 /2 + 1 - 371 + 471 TSinhx = .2 [== 371 + 471 ==


(6) Find the Fourier Series expainion of in - TX = X = T & hence prove Bolun: Let x+x= 100+2 (an cosnx + balinnx)

a. = 1 (7) 21, Jeu) = fex) even

Per odd

X zo a = = = (x+x2)dx Z X [ST xdx + ST x2dx En Vodd - n Veren even size 25 x2 = 1/2 [0+ 2 50 x2dx) ao = 2/2 an= Is (x+x2)cosnxdu z / Stacosnidx + Stacosnudx

wooden - Triving cos (-0) = cuso. = x [of 25 x2 cosnxidx) 22/ STX2 COSNX dx

2 [x (-cosnx) -1(-sinx)] ENT TOSON +Sign bn = -2 (-1)" $11+1^{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1$ 2+x2 12 + 54(-1) (cosnx - 5innx) This is shall for -TZXZX

This is shall fren Rus = 3 + 4 2 [C-1) cos n(±1) - (-1) Sin n(±7) = 13 + 45 7 E112-0 4 2 7/3 +4 \(\frac{5}{2}\) C-1/2n 1/3+4 5 1/2 = PW.

But LH is not defined of few is not defined. when n= ±x fox) is not defined at xx Now their is a Rote Role fourier series namely The function can be defined when Xz In astory f(±K)= = [lim - T+o f(x) + lim f(x)] 4(+x)= /2 [sm - (x+x2) + lim (n+2)) = 1 (-1+12+ 1+12) = 32/12= 72 : 12 13 + 45 /2 程度24至12 20 2 4 5 1/2 7/6 - Sz /2 12 = 1/2 · 1/2 · 1/3 2 / 4 2 t

Find Fourier series ofor the fun. 6

for)= 2x+x

O \(\times = \times \tau \tau \). Solun: The Pourier Series is given by 4(x)= ag + Sancosnort & businnx -() Coz X 5 fraids = XLS (X+N)dx+ S (X-N)dn) 2 次にかれたなり、十 しかれーなりのう 2 /x [(0+0)-(-1+1/2)+(1-1/2)-(0-0)] 2 /x [x2-x2+x2-x2) a = T

anz / francosnxdu =/x [so (x+x) cosnudut (x-n)(osnudu) $= \frac{1}{\sqrt{\sqrt{1+n!}}} \left(\frac{\sin n}{n} \right) + (1) \left(\frac{\cos n}{n^2} \right) \int_{-\infty}^{\infty}$ = /2 (0+/2)-(0+(05n+)+(0-(05n+)-(0-) 2/x[/2-Cosnx-Losnx+/2] 2/2-2/2 COSNA) = 2/2/ (1-COSNA) E 2/2× [1-(-1)] in bno / Stansin nxd n ZX TSO (ATMISINIM dut STA-NISINIM du)

= /7 [(x+m)(-(csnx) + sinnx] 0 +[(x-x) (-(05nx)) - Sinnx] Ty = x [] x (-x)+0 y-(0-0)+ (0-0)-[x (-x)-0]) ~ 发 上发大发) 0-/2) bn20 f(x)= 75t 2 2/2 2 1- (-1) COSNX TOY 27/2 2/2 21-(-1) 1 y cosn 4. ndn

Sowlet fon) = ag + & ancosny + & bn Sinny. 2 / [37/2 fem) du

2 / [5 1/2 | du + 5 37/2 (-1) du)

2 / [5 1/2 | du + 5 1/2 (-1) du) 2 人(大大人)-(372-72))20 an= / (37/2 f(n) cosn x. dx - 1/2 f(n) cosn x. dx - 1/2 (-1) cosn x dx - 1/2 (-1) cosn x dx 2/x [2 Sinnx y] - 2 Sinnx y] - 2 /x [2 Sinnx y] - Sin 30x]
2 /x [3 Sin 0x - Sin 30x]

a12 / [35int/2 - 5in 3/2] 24/ a22 / [35:0 T-5:037) 20 a32-4/57, a=0, a524/57 etc 6n2 X (37/2 40x) Sinnx du) 2/x [5/2 1. Sinnxdx+ 53/2-1) Sinnxdx) 2/x [2-cosnx / 7/2] cosnx y 1/2/2 2 - /05 [COS 307] - COSNA) =-/nr [-25,02nr, Sinon] fort and + & ancosmut & businny = 4/ 1054- 13 cos3x+13 cos5x.

Obstain Reusier Series in the inderval (-T, T)
for all for few 2x Hence P.T T471-375-9+--Solun;-2) Obsain Fourier Series for the fun

f(n) = 2 K - KENZO & fext21 = fey

f(n) = 2 K OENZT

Solu": Let fen) 2 ao + San coson + E bn Sinny

Now ~ 2002/ Stenich = / [Stenick dut [kdm 2/ [-k(n)] = 0. anz K JK SEX). Cosnudi Z/KSO-K.COSONAdN+/KSOK.COSONAdN.

= / [-k2 sinonly" + k2 sinonly"] = o. (Sin no = 0 = Sino) bn= / Starminsinnadu 2/ Showdut & Str. Sinnudu = 4 [-k 2-cosnn jo + k 2 -cosnx jo) = / [/ 21-cos nxy- / 2cosnx-14) E KOR [1- COSNA - COSNA +I] 2 2k [1-(05n7) COSNX= (-1)n, i, bx= 2k [1-61] b, = 4k, b2=0, b3=4k, b4=0, b=4k fox=45 [5:04+] 5:03x+] 5:05x+ --)

Fourier Series of functions with period Let fix) be a function with period 2L, f(x+2L)z f(x) Yall 11 put N= Lt f(上生+2L)= f(上も) f (Lt+<)=f(Lt) f([= (+ 27)]=f(1) frence f(Lt) is a function with period 2π ,

frence f(Lt) may be expanded in a

pouner series in the interval $-\pi \le t \le \pi$ in the form. ∞ f(\frac{1}{2}t)=\frac{20}{2}t\frac{5}{2}ancosntt\frac{2}{2}basinoth where as = 1 5 f (Lt) dt ano 1/5 f(it) count do bn=1/x State Sinnt dt

since x= Lt we have - ME tEN, -L/To Eig. t = L/T il -LEXEL Also t= TX => do= Toly Thus we have as = / Stexida anz / 5 fon) cos (12x). To da On / Steam cos (nor) du bn= 4.5 fax) Sin(nTN) Told bn= > [Lfox) Sin(nTX) dx f(Lt)= 200 + Sancosnt + & busin not fer 12 as t S an cos (arx) + S basin (norx)

Fourier Series of fun with period 22. (2) Find the Fourier Series for f(x)2 3 2x OZXZI solu", - For fox), period = 2L=2 The Fourier Series for 40015 for) = or + Ean cos(orx) + Ebnsin(orx). 200 + 5 ancos (nxx) + & basin(nxx) 00= / Standn = Standn 2 S-1dx+ S' 2ndx = -[x],+[x2] 20 anz / S-fons. cos (n/x)dy. anz J'fon). cos(nru).du = 5° (-1). COS(nTM)dn+51 2x cos(nTM)dn

$$= \frac{\left[-\frac{\sin n\pi x}{n\pi}\right]^{2} + \left[\frac{2\pi}{3}\frac{\sin n\pi x}{n\pi} - 2\left(-\frac{\cos n\pi x}{n^{2}\pi^{2}}\right)^{2}}{\frac{2}{n^{2}\pi^{2}}}$$

$$= \frac{2}{n^{2}\pi^{2}} \left[\frac{(-1)^{2}}{1}\right]$$

$$= \frac{2}{n^{2}\pi^{2}} \left[\frac{(-1)^{2}}{1}\right]$$

$$= \frac{2}{n^{2}\pi^{2}} \left[\frac{(-1)^{2}}{1}\right]$$

$$= \frac{2}{n^{2}\pi^{2}} \left[\frac{(-1)^{2}}{1}\right] = -\frac{1}{1} = 0 \quad \text{i. an 20}$$

$$= \frac{4}{n^{2}\pi^{2}} \left(\frac{n^{2}}{1}\right)^{3} \cdot \frac{3}{n^{2}\pi^{2}} - \frac{2}{n^{2}\pi^{2}}$$

$$= \frac{4}{n^{2}\pi^{2}} \left(\frac{n^{2}}{1}\right)^{3} \cdot \frac{3}{n^{2}\pi^{2}} \cdot \frac{3}{n^{2}\pi^{2}} - \frac{2}{n^{2}\pi^{2}}$$

$$= \frac{1}{n^{2}\pi^{2}} \left(\frac{1}{n^{2}\pi^{2}}\right)^{2} \cdot \frac{1}{n^{2}\pi^{2}} \cdot \frac{1}$$

Scanned by CamScanner

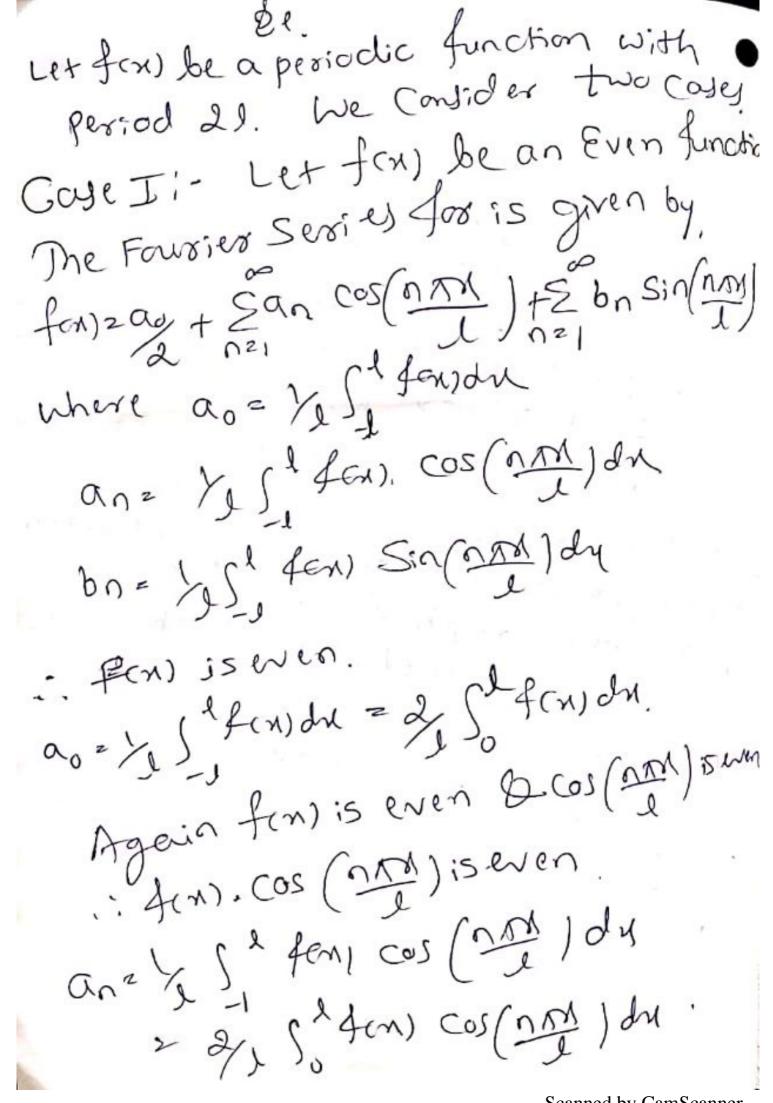
b₁= 4/_K, b₂= -/_K, b₃= 4/_{3π}, --f(n)= α₀ + Σ α_n cos (ηπκ)+ Σ b_n Sin(ηπχ)
η₂₁ =-4 2 COS XX+ 3 COS 3XX+ 25 COS SXX+--} +42 45:0xx-Sin 2xx+4 550371x+-9 2) Find Fourier expansion for the fun

-1 <0 <1

F(N)= N- x², -1 <0 <1

jolu?:- For fen) period 2L=2, ... L²)

iolu?:- For fen) series for fon)is


:. The Fourier Series for fon)is (Fm) = ag + Sancos(nTX)+Sbnsin(nXX). where a = 2 Sufanish 25' (x-x²)dx=[x²-x³]=3

(3) Find the Fourier expansion for the fun fcm)= 3-1 -3=x= Solu": For given period 2L28 fen)2 au +5 an cos (nT) 1+5 bn Sin (nT) where a = 135 for) du aoz 35° fendut 3 somidu 2/35° (-1) dy+ /35° 1 dx =0 : [a0 = 0] an= 3 53 fonta. cos (nxx) du an= /3 5 (-1). cos (0 TN) dx + / 3 (0s (0 TN) dn = 3 [](-3 xSin(13)] + [3 Sin(13)] 3

Scanned by CamScanner

an20 bn 2 /3 fcm). Sin (nxx) du 2/3 5° (-1). Sin(1/3) dut 3/3 Sin(1/3) du = /3 [(05(05)) + [-cos(now)) 3 少。[流[1-(-1)]-多元(-1)]-3 2 - Toli-(-1))- /2 [(-1)-1] = 2/15 [1-(-1)n] i. bn² for when nis odd fox12年2SinサイトSinが大り

Fourier Series of even Bodd Findin A function f(x) is said to be an even function if f(-x)=f(x) ex. COSH, Nº X3SINH, X2COSH. A function form is said to be an odd function if f(-x)=-f(x) en: Sinn, n3cosx, n3, 225inx. The Geometric characteristic
of the graph of even function 4(x) is that graph is symmetric u.x.t yanis I For the graph of an odd function. we have symmetric w.r.t the origin. roperti gafendre 22 so fendre fix) is odd -a properti L. 46 (2.17)

Now, for) is even & sin (not) is odd.

i. f(x).sin(not) is odd. bn2 /s fex). sin(nom).dx Hince for even periodic funces series With puriod 21 We have Forsier series f(x1) 2 ag + 2 ancos () where I foundre ao = 2/2 = So foundre anz 3/2 So font. cos (millou : 4(n) is even periodic fur with period 2x. We have
for 12 ag + 5 an cos(nx) where of fixed, on 2/5 fixesom du.

coule 2: - Let for be an odd function fan) is odd & cos(now) is even .: f(x) cos (n/1) is odd, anz / S. Jan. cos (mon) du Again fontis odd & sin (ng) is odd.

Again fontis odd) is even.

A(x). Sin (ng) is even. bn2 / fen), 5:0(25) 1.dn 22/ Stf(x) Sin(non) John Hence for odd periodic fers, with period

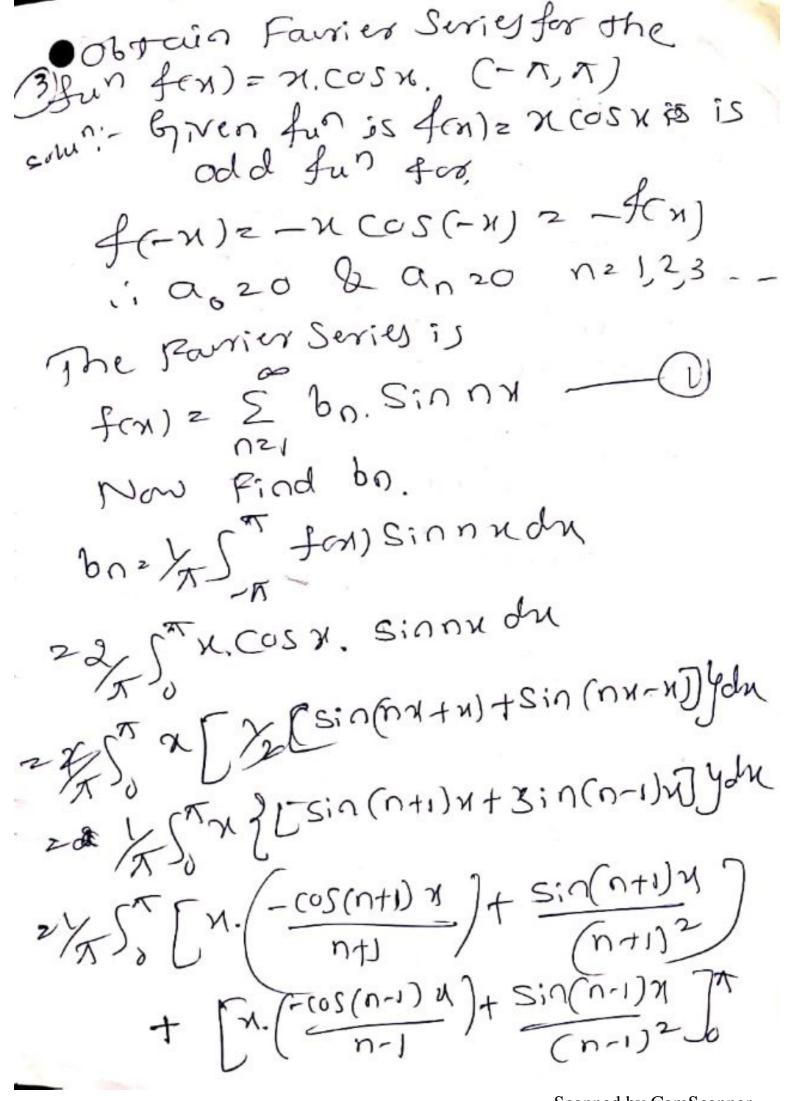
Il we have fourier series.

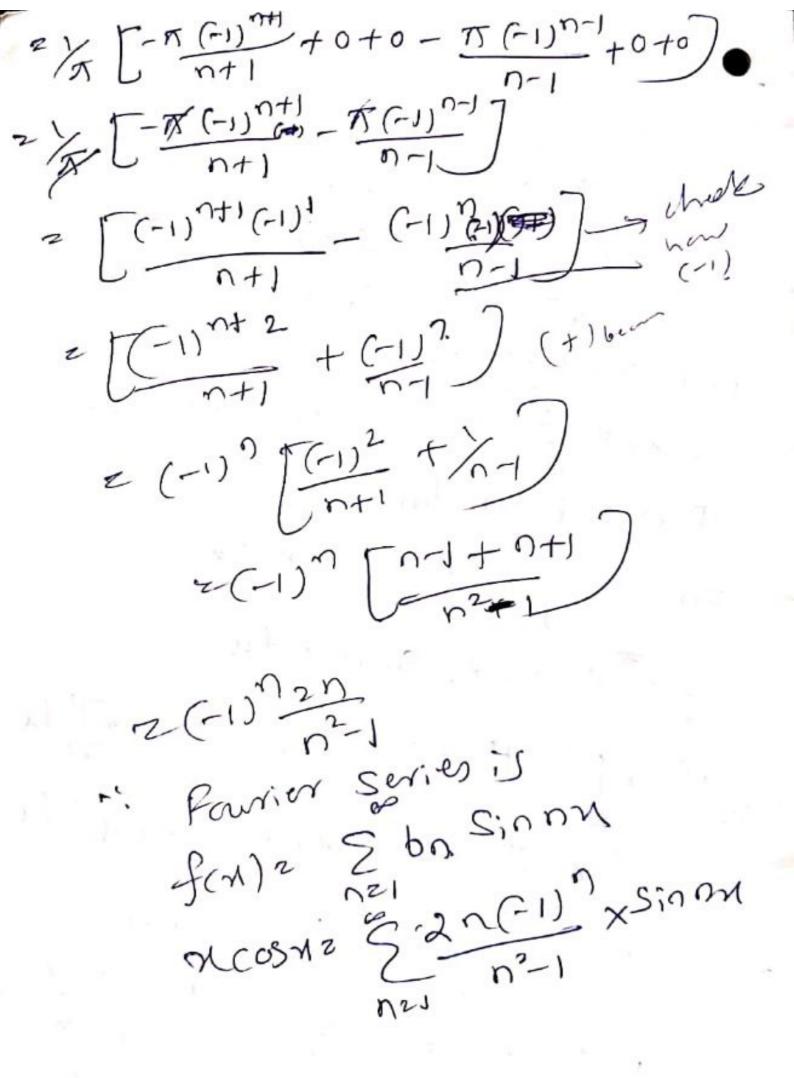
Jen 125 an Sin (n. M). where boz 20 So fension (not).dx

= 2-41 n=52 when n is even Erm & odd fun f(N) = 1x = 2 - 41 (cos (M/s)) + (cos (3TX)) + ---) Dobtain the Faurier Series for the Enpanion of for12x2, Text = META enpanion Solur: Here fin) 2 x2 is even fur. Hunce. We have Fourier series f(x)2 00/ + Ean cos(nx).

put (l=1) ao 2 2 5 Ten du 2 2 5 Tu 2 du - 2 [13] = 272

= 2-41 n=x2 when n is even Even & odd fun f(N) 2/N/2 2 -4/2 (COS (M/1) + COS (3/N/2) +---) :. period = 2 T. 4(x)=1x1=2/2-4/1=12+ Cos3x + Cos5x - 52+--Dobtain the Favrier Series for the expansion of $f(x)=x^2$, f(x)=f(x)Solu?: Here f(x) 2 x² is even fu?.


Hence. We have Fourier series f(x)2 00/2 + Ean cos(nx). put (let) ao 2 25 Sten du 2 2 5 Tu 2 du = 2/5 [13] = 2/12


anz of Soffers. Cos(nx)dn = 2/ Sonndn = 2 [COSON] .: SIONN TO 2 g -4/n2 when nisodd 2 4/2 COSN TI The when on seven. :.fex)2 + 4 [-cosx+2 cos2x-1 cos3x+--] N273-4 [COSX-120052X+)320053X---) Put X= T (057-)2 cos27+1/32 cos37---) 12-132-4 [05 -1-/22-32----) 25/324 [1+/22+/32+ --/n2+--) E/2 = 7/6/

02227 (3) fin) 2) 7-x 2 - (7+x) ーイとれくの X 50 00 IV. 2) Here f(-N)= 3 7+4 OCNCA
-(N-X)) - ACNCO CLUCK 220 or ±7 f(-x) = -f(x). : f(n) is odd function Hence the Fourier Seriey f(N) 2 & basin (nx) (: len) where boz 2/ Stray. Sin (0x) dx = 2 So (7-x) sin(ny) du 22/ [-COSNU) - (-/2) [Sinnu] ~ 2 2 x (2n) 2/n

Even bodd fun de. (2) Obstain the Fourier Series of fon)2/x) in (-15,75). Solun; - f(x) > (-x, x) which is even fun. where not f(x) 2 /x/ 2x The Fourier series is given by for1) 2 ag + E an cosme ao = 25 fanon = 25 xon = 2/2 [12] = 1/2 [12-0] 2/1 Find an an=2/5 frn). cosnudu = 2/5 n n cosnndu Z 2/ [n. Sinny + cosny] 22/5 [O+ (05 n/2) - (0+/2) 2 d/x n2 (cosnx-1) 2 2/2x (C-1)?]

· 1 x1 2 72 + 2 3/27 2 (-1) 2 1 /cgm fen) 2 ag + 5 an cosnx 1×127/2 +2 21(-2) cosx+0 +1/2(-2)(053x +1/2(-2) cossxy 272-4 2 COSX + 1 COS 3X + 1 COS 549 T= 7/2-4 (-1-/22-/52---) T-7/2 = 4 (1+/32+/52+ ---) 78 = 1+/2+/52+ ---2 8 (2n-1)2

Examples:-Find Fourier Series for the periodic function fex) with period 21, there fox)2(x) -LEXED soluni- Here fen) = [x] is even fun, Hence For even periodic fun des with period 29. :, f(x)= ay + \(\ancos(n\)) where are of sternon 2 2 5 n dn = 1 anz 200 form, cost my / du 2 2/1 So x. cos(2) 1 Jy $= 2 \int \left[\frac{1}{n\pi} S_{1}(n\pi) + \frac{1}{n^{2}\pi^{2}} cos(n\pi) \right] dx$ $= 2 \int \left[\frac{1}{n\pi} S_{1}(n\pi) + \frac{1}{n^{2}\pi^{2}} cos(n\pi) - \frac{1}{n^{2}\pi^{2}} \right] dx$ $= 2 \int \left[\frac{1}{n\pi} S_{1}(n\pi) + \frac{1}{n^{2}\pi^{2}} cos(n\pi) - \frac{1}{n^{2}\pi^{2}} \right] dx$ $= 2 \int \left[\frac{1}{n\pi} S_{1}(n\pi) + \frac{1}{n^{2}\pi^{2}} cos(n\pi) - \frac{1}{n^{2}\pi^{2}} \right] dx$ $= 2 \int \left[\frac{1}{n\pi} S_{1}(n\pi) + \frac{1}{n^{2}\pi^{2}} cos(n\pi) - \frac{1}{n^{2}\pi^{2}} \right] dx$ = 2/272 [COSN X-1]

Formin singles of even & odd Run Continue Inparticular fon) is an odd periodic fur with period 2T, fon) = 5 basin(nx) where bn= 2/5 5 fcx) Sinnxdy -. Formula. (1) If fran is even function. a0 = 2 5 fcx) dx. anz of Stonicos (nth) du for12 do 45 ancos (n7x) 2) If for) is odd function.

bn=2/5 frx) sin(n) dn f(x)2 5 60 5:0 (05/1).

Examples:-Find Fourier Series for the periodic Find Fourier Series for the period 21 Junction fex) with period 21 Where fox)2(x) 12xcl soluni- Here fen) = [n] is even fun, Hence For even persodic fun des with period 21 is :, f(m)= do + \(\sin \ancos \left(\frac{n m}{2}\right)\) where are of star, du 22 SIN du = 1 anz 2/15 form, casy ng/) du 2 2/1 So x. cas(200) John $=2\sqrt{\frac{1}{2}}\sqrt{$ = 2/2 COSO X-1

(1) Find a in the Fourier Expandion of fen)= x + x2 in (-15, 1). => Given \$61)2 ×1+ ×2 · fon 1 = ag + Sancosnut Sbalinon 1 find ao.

ao 2/ (x+n2)dn 22×3

Half-range Sine & Cosine series The fun form) in range (0,71 ina Parrier Series of period 21. OR In the range (O, L) in Former Series of period 22. In a periodic fur with period 21 is defined only in the interval (0,1) Thun it can be expanded to in a series Containing only sine co carine function Such Pourier Series is called a Pourier half vange or Faurer Porcerier Cosine half vange or Faurer Sine half range series, Cosine expansion; - Fo find the expansion of fex), in therange ocal expansion of fex), in therange to contain only cosine terms. We entend the fun for) by reflecting it in the interval

Half Range Sine Series If we required to expand of for as a Sine Series in (0,1) then We extend the function reflécting in the origin: f(x)=- f(-4) Then the extended function is odd in (-1,1) & the exportion will give the desired Fourier sine Seried f(x) = \(\frac{5}{\lambda}\) \(\frac{n\pi \tex}{\lambda}\) NOTE: -(1) It has to be written of Fourier Sine half range Sexies in Co. 1) then for1 is breated of odd function in 2) Suppose f(x) is a function in the interval (Co, x) & -f(-x) in «Nerval (-T,0) then for12 & businny

fox12 & puzioun Harf-Range Casine Seriey If it is required to express fox) as a cosine series in (0,1) we endend the function reflecting it in 4-azies, so that f(-x) = f(x) Then the entended function is even in (-1,1) & it expansion will give required Fairier cosine series fox12 ag + San cos nxx where ao= 2 5th f(x)dx an = 3/1 Solf(x1) cos (nxx)du NOTE: (1) It has to be written Fairier Cosine half-range series in Co, 1) then form) is decided as even Jenction (-1,1) 2) for) is a fun in inversal (0,7)k 2) for) is (-t,0) the an cosnod for 1 z age to Figure 2

Scanned by CamScanner

Depresent the following fun fext of Pourser cosine half range series f(x)2) x-x 02xcT2 x-x 72=xcT. Sow":- The graph of fens in OZXZX
is oars in fig. les us entend the In fin in the interval (-17,0) By new fun is Symmetrical about 4-anis Grapwically shown by B'A'O) Thus form) is an even fut in [-1, T] will contain only cosine termy & fernz og + gan cos (nm). given by 20 = 2/x 5 x fen) dy
= 2/x 5 x 2 x dx p /x 5 (71-x)du

anz of Stex). Cosmudu -2 5 x cosnxdut 2 5 (x-x)(asnxdu = 2 [x.S:00x + cosox] 2/2 + 2/ [(1-x) S:00x - cosox) - of Caroling + 1/2 Cosn 2 - 1/2 - Cosn 7 - 5 sin 05 + /2 cos 2 = 2/2 [2 cos nz -cosn x-1) a,=0, a2=-8, a3=0, a4=0, 05=0, f(n)2 T/ - 8/ /22 COS2N+/62 COS6N+1 COS8Ne-1

(1) Represent the function fox) of Fourier Sine half range seriey where f(x1) = x, 0 < x < 1/2 fen) z T-X TZ CX ZT. Solu":- We shall extend the funfox) Shown by B'A'o in the fig. Such that entended function four represent an odd function. bé couse the curve is symmetrical about the origin

Thus the Fourier expansion for fex) over the full period 2x will contain only sine terms & is given by f(x) 2 & bn sin(x) where boz & Stran. Sin oxdy = 2 So 21 Sin nx dx + 2 5 (A-x) Sinnx dx =2 [-x cosnx + nx] 72 = E(x-x)comx-sinnx] = 2 [- Tous not + /2 sin not + 72 cos not + /2 sin not) 2 4 × Sin n 2 b2 2 b2 = --- 20 b1 = 4/2x, b3 = -4/32x, 65 = 52x -- CHP Hence Require sine series for jover f(x)2 4/ [/2 Sinx- 32 Sin3x+1/2 Sinsx----)

Represent the following function for) as a four, er cosine seriey -fcn)= N, O = N = L. we shall entend the function for Shown by oa' in the fig. Such that extended function f(x) represent as even function because the curve is symmetrical Thus the Fourier expansion for fox) wer about the y-anis The feel period 2L will contain only eine terms & is given by

Sinnxzo, Cosnxz (-1)n

.: an 20 when n is exven

when n is odd

an 2 2L (-2) = -4L

n²x²

Hence Required Favrier Cosine series

of forn over the half range [0, 1) is

fix12 y - 4L 2 cosxx + 2 cos 3xx + 2 cos 5xx + 3

5 2018. find half- range cosine series for the function f(x)= (x-1)2 in (0,1). Hence P.T 12 8 (1/2 + 32 + 1/2+ ---) soluni - Fourier series is f(x)= (x-1)2 (2 (0,1) For Fourier half range cosine sories frx)2 ag + E an cos(nxx) -D where ao= } S'fanduz 25, (x-1)2dx 22 [(x-1)3] 2 2 2 (1-1)3- (0-1)34 anz 1/So form cosn midn 225, (X-1)2 cas nondu 22 [(X-1)2 (sinnxx) -2(x-1) - (cosnxx)+2(-sinnxx) -2(x-1)-(n2x2)+2(-sinnxx) 22 [(0-0+0)-(0)-2(-/2x2)to) z anz 2 (/2/2) 2 4/2/2 put value of a & an in (1) fex)2 ag + St an cosn my (x-1)2 /3 + 50 4/272 COSNAX 2/3+ 4/12 5 /2 COSTITUL (N-1)2 = 3 + 4/2 2 costn+1/2 cos27x+ 1/32 cos37x+ --) (5) constaul. put xz1 then 0=3+472[-1+/22-32+42-52+---]-3 put x20 12/3+4/2 [1+/2+/32+/32+/-32) Substract (3) - @ givy 120 +4/2 22+32+3/2+ --) 1=0+8/221+32+32+32+--> か28月1七分十分2十分2七 ーーダ (6) Find the half-range sine & cosine Series for the function for) = 51-x, OCXX pt: Given function is fear) = 1-x, in CON (1) Half Range Sine Series
franz & bo Sinon. where bn2 2/x So (x-x) sinnx dy 22/ [(x-x) (-cosnx)- (-1) (-sinmx)] = 2/ [(oto)-(-7/)] = 2/ :. bn= 2/n fen)= & bo sin my (x-x) 2 & 2/0 sin my

(ii) Half Range cosine Service). fon) 2 do + Eman cosnx where a = 2/ 5, T(x-x) dx 2 / [(x-x)2] = 2/ [0+72] anz of So (x-x) cosnAxdy = 2/ [(x-x) (sin nx) - (-1) (-cosnx)) = x 2 % [30-cosnty-60-/29] 2 2/2× [1-(-1)0)

(4) Find the half Range cosine series of for 12 x in (0,2) (only Find a),2M. Solur. Let fax) = x in (0,2) cosine series

For Foursier half range cosine series

fax) = 000 + 2 an cos (nax) - (1) where ao = 2 52 fexion = Sundr = [42]2 anz 5° fcx1 cos (0xx) dx 2 5° x cos (0xx) du 2 [X Sin(n\(\frac{\sin(n\(\frac{\sin}{\sin}\))]^2 (nz)2 0 2 [dx sin (nax) + trat cos (nax) ~ [0+4,2005)-[0+4,2000) 2 4/2×2 (COSUX-1) anz 4/22 [(-1)] put values of as lean in 10 we get f(x)= 1+ 50 422 20-12 14 cos(n72) X2 1+ 4/22 500 (1/2) (C-1) -1 y cos (1/2) 1. OR N: 1+ 4/2 [-2 cosnx + 0+ -2 cos (3/2)]+0+ -2 cos (5/2)

N: 1+ 4/2 [-2 cosnx + 0+ -2 cos (3/2)]+0+ -5/2

S2 7

De. (7) Find half-Range sine & cosine series for the function for) = 2x-1, in (0,7) Solu":- Given function is fex) = 2x-1 Half- Range Sine Series franz & basin nata where boz 2 5 (2x-1) Sinnordy 2 2 [(2x-1) (-cosnAX) -2 (-SinnAX)] 22 [2-cosnx-0y-2+x-09] 22 [-/nx (cosn7+1)) 2 - 1/0 × 2 1+ (-1) 2 2 basinana (2x-1) = 2 5 / 1 1+ (-1) ny sinnara (ii) Half-Kange cosine serily
fra)2 ag + & ancosnan where a = 3 51 (2×4) dn = 2 [2x2-n] = 2 [(1-1)-0] an= 251 (2x-1) cosnAday 22 [(2x-1) (SinnA))- (2) (-cosnAx)] 22 [20+ 2 COSATX 4-20+2/2729) 2 \$ 272 3 (=1)214

(2x-1) 2 4 2 2 2 (-1) 2 14 cosning (2x-1) 2 4 2 2 (-1) 2 14 cosning

UNIT-III

Fourier Transforms

Syllabus:

Unit – III

Finite sine and Cosine transforms.

10HRS

, Se FUURIER TRANSFORMS

In this topic we shall discuss the Fairier sine and cosine transformy & their properties These transforms are appropriate for problems over finite intervall in a variable in which the function or its derivative are prycribed

Finite Fourier sine and Cosine transformy on boundary are main concept to soudy in internal (0, 1) & (0, x) which are Finite. Here we use the formula for Fourier Sine & cosine series with fruite range

The Finite Fourier Sine Transforms of foxy It is useful fer problems invalving boundary conditions of head distribution on two parallel boundarily

Defination: The finite Fourier Sine toansform of tens in (0,1) is defined by Fs(n)= So f(x) Sin (nxx)dx

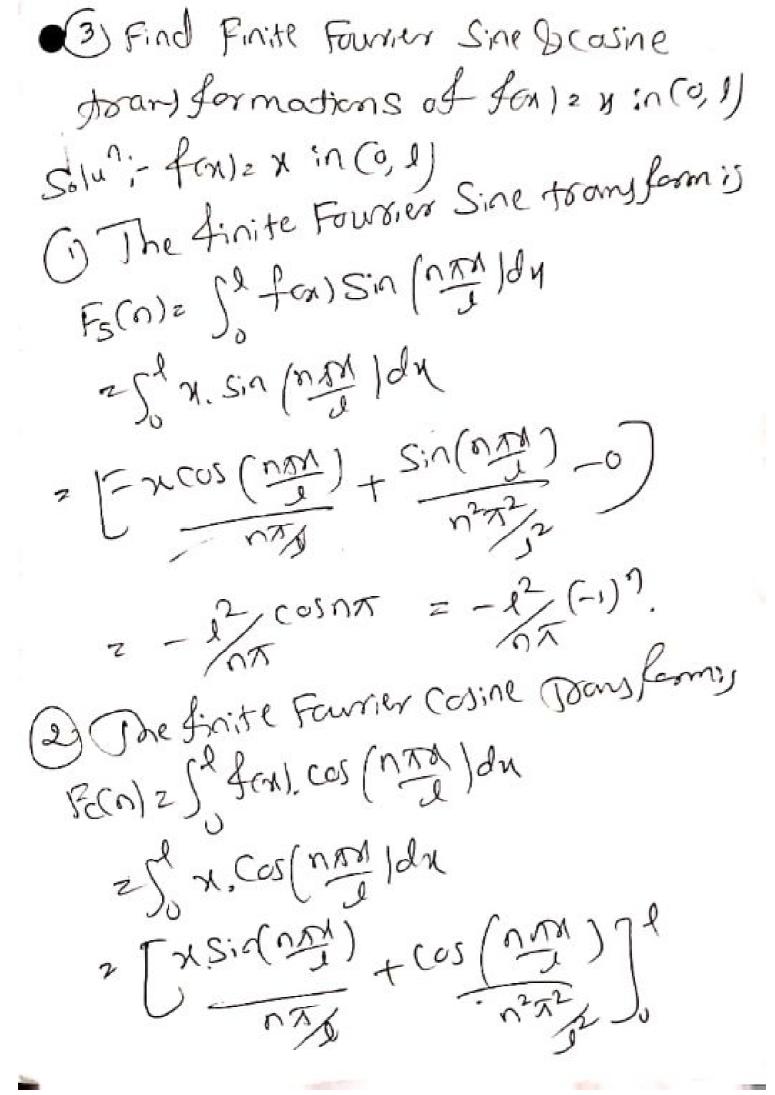
where n is positive integer.

The function fox; is then called the inverse finite Fourier Sine transform of Fsco) & is given by

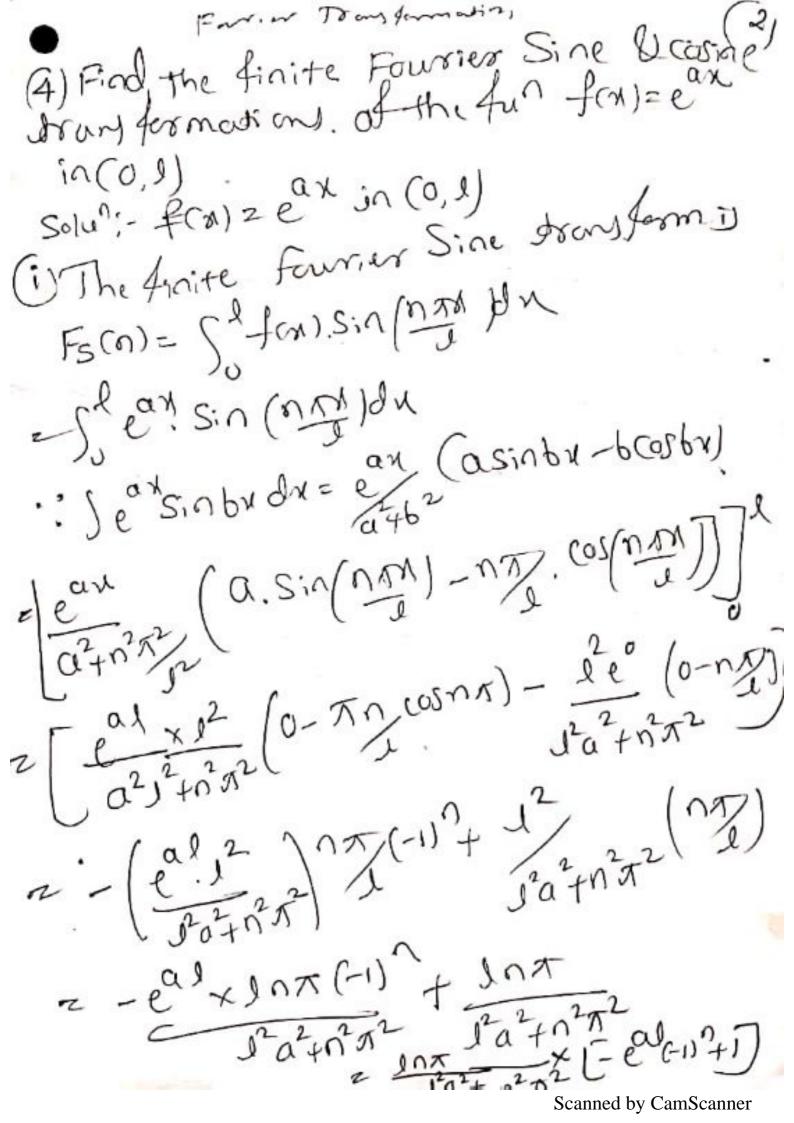
fan = 2 5 F3(n) Sin (ng) 1.00

The above formula is obtained from Fourier Sine Series

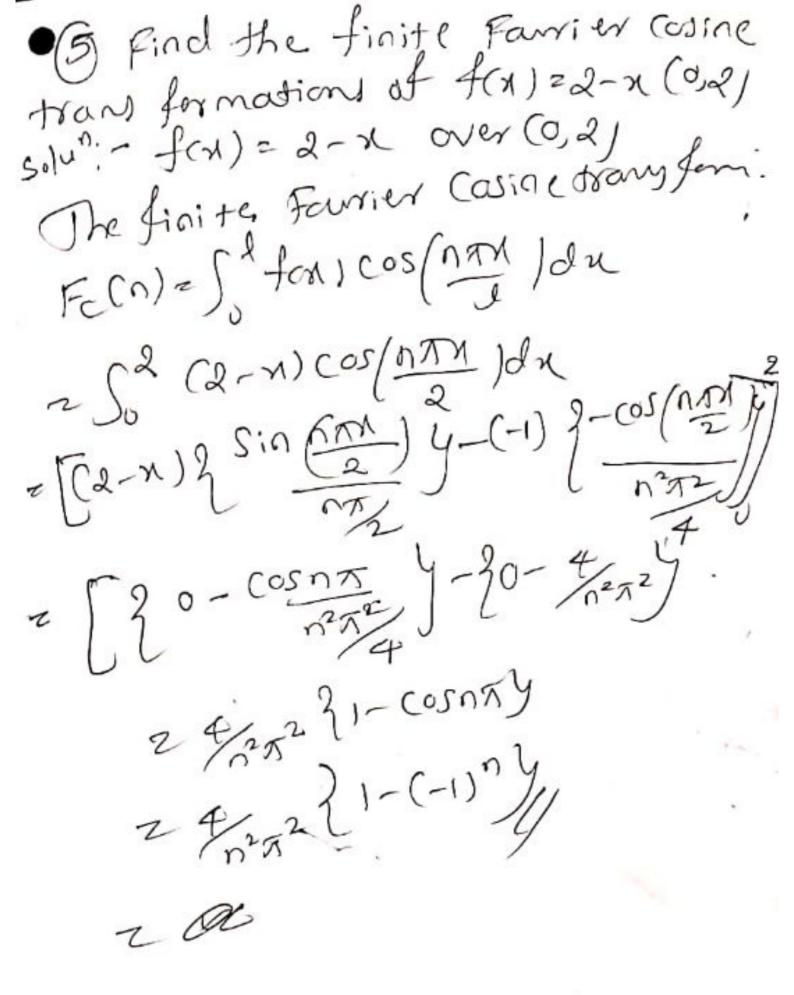
NOTE: The finite Fourier Sin :of fox in (0, 7) is defined by Forne for foxision was where fox = 2 & face) sin(nox) ust n is positive integer. The Florite Fourier Cosine Transform of fox, The finite Fourier Cosine Transform is Useful for problemy in which the velocities normal to two parallel boundaries are among the boundary Condificny Defination: The finite Fourier Cesine transform of foxin Co, 1) is defined by Fcn)z pl fcx) cos (nxx)dx. where n is positive integer. The function fox) is then called inverse Finite Fourier cosine transfermation of Feca, fix)= / Fc(0)+ & Fc(0) cos (n/1/j) & is given by The above formula is obtained from Famer Cosine series fixizag fe ancos (ntx) NOTE: - The finite Fourier Cosine fourtform of train (0, x) is defined by Fc (n)= Stf(x) cosnxdx where fex 12 2 + E Fc (n) & n is positive integer

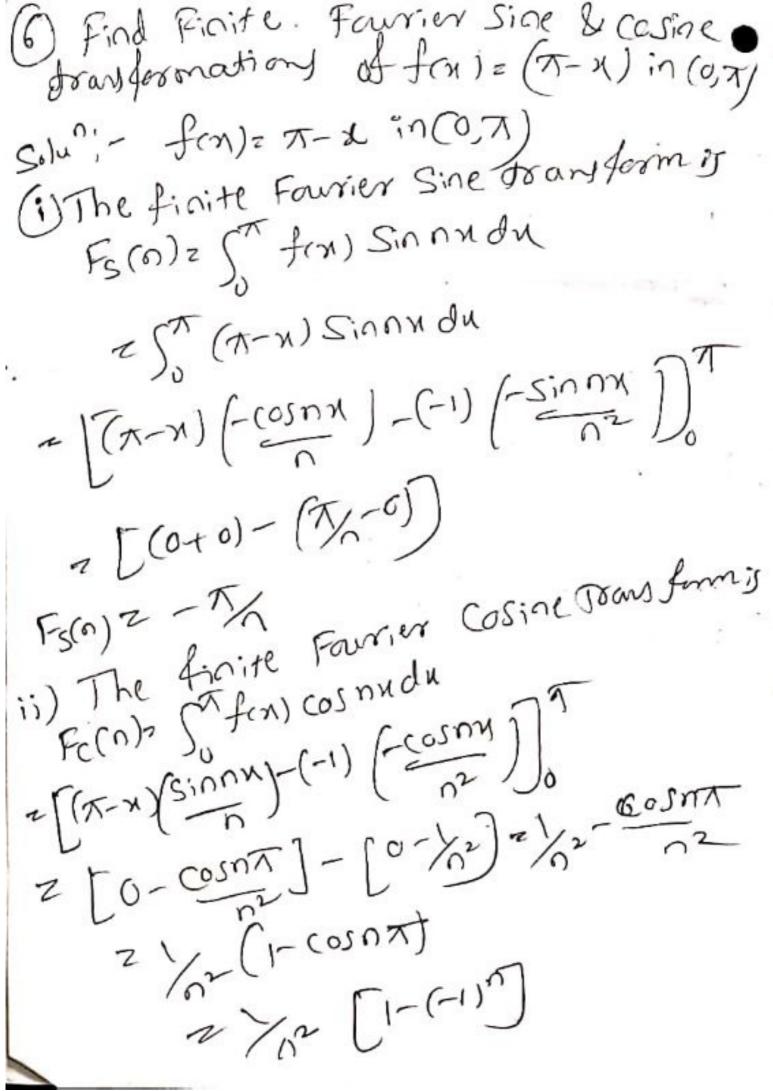

NOTE: - The finite Fourier Sine transform of four in (0, x) is defined by Fs(n)= 5 farsinneda where fox = 2 & fs(0) sin(nx) It is positive indeger. The Figite Fourier Cosine Transform of frx, The finite Fourier Cosine Transform is Useful for problems in which the velocity normal to two parallel boundaries are among the boundary conditions Defination: - The finite Fourier cosine transform of fixin Co, 1) is defined by Fccn)2 pl fcx) cos (nxx)dz. where n is positive integer. The Lincotion fox) is then called inverse Finite Fourier cosine transfermation of Fich frx1= / Fc(0)+ 2 & Fc(0) cos (0 III / O) & is given by The above formula is abtuned toom Fairier Cosine series fixizag for ancos (ntx) NOTE: - The finite Fourier Cosine toansform of text in (0, x) is defined by Fccn)= Stfcx) cosnxdx where fex 1= 21 + E Fc (9) & n is positive integer

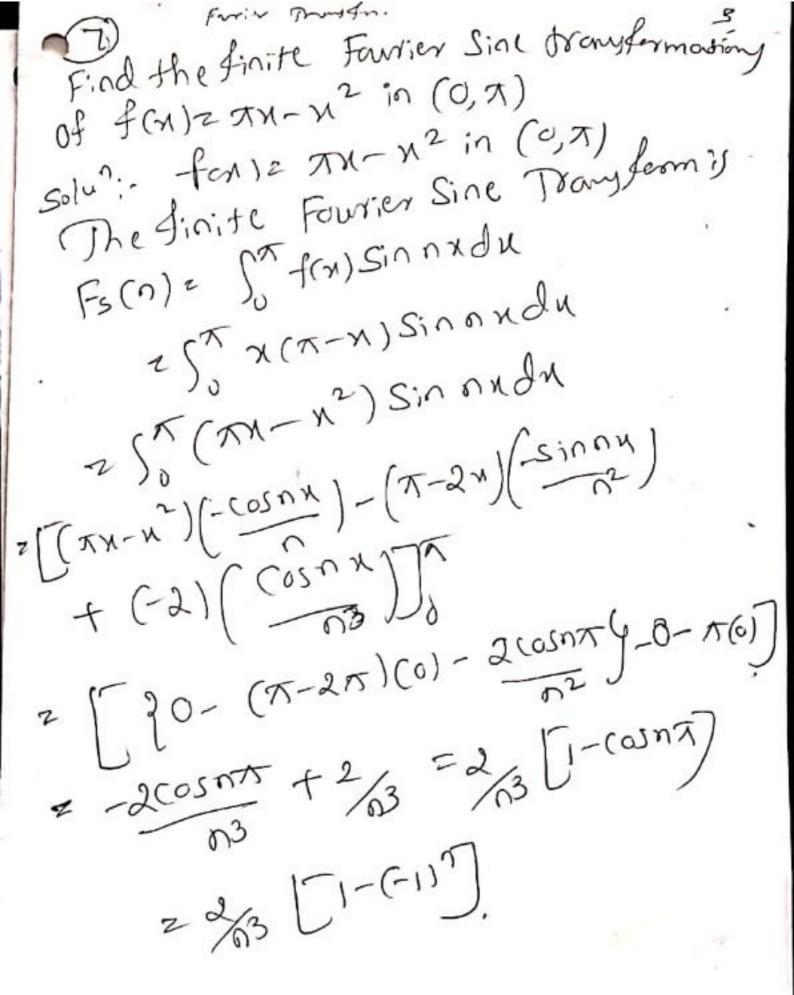
Formula.

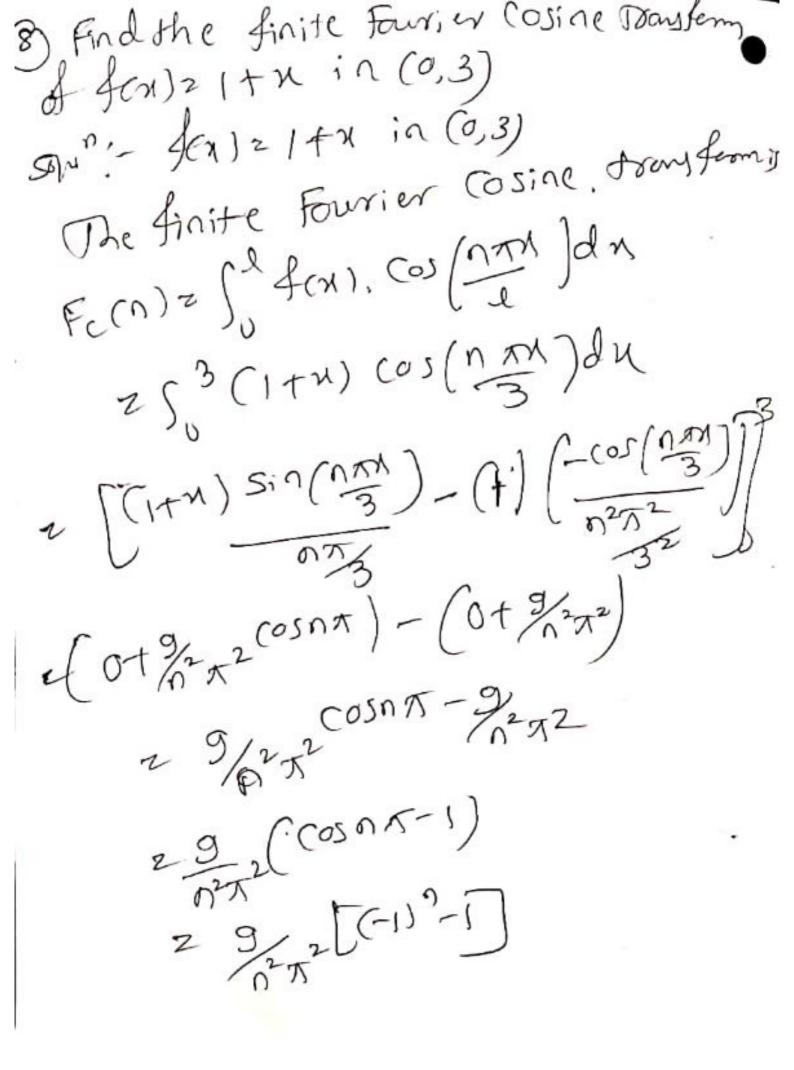

- (1) Finite Fourier Sine toansform of fox in (0,1) Fo(n)= S[f(x)]= Sof(x) Sin(nxx)du
- @) Finite Fourier sine toansform of fex; in (0,7) FS(n)= S[f(x))= Stof(x), Sinnudn
- (3) Finite Fourier cosine transform of from in (0,1) is Fecono c (fox))= solfox) cos (nxx) du
- (4) Finite Fourier Cosine transform of form in (0,77) Forn) = offex D= jor fen cosmuda

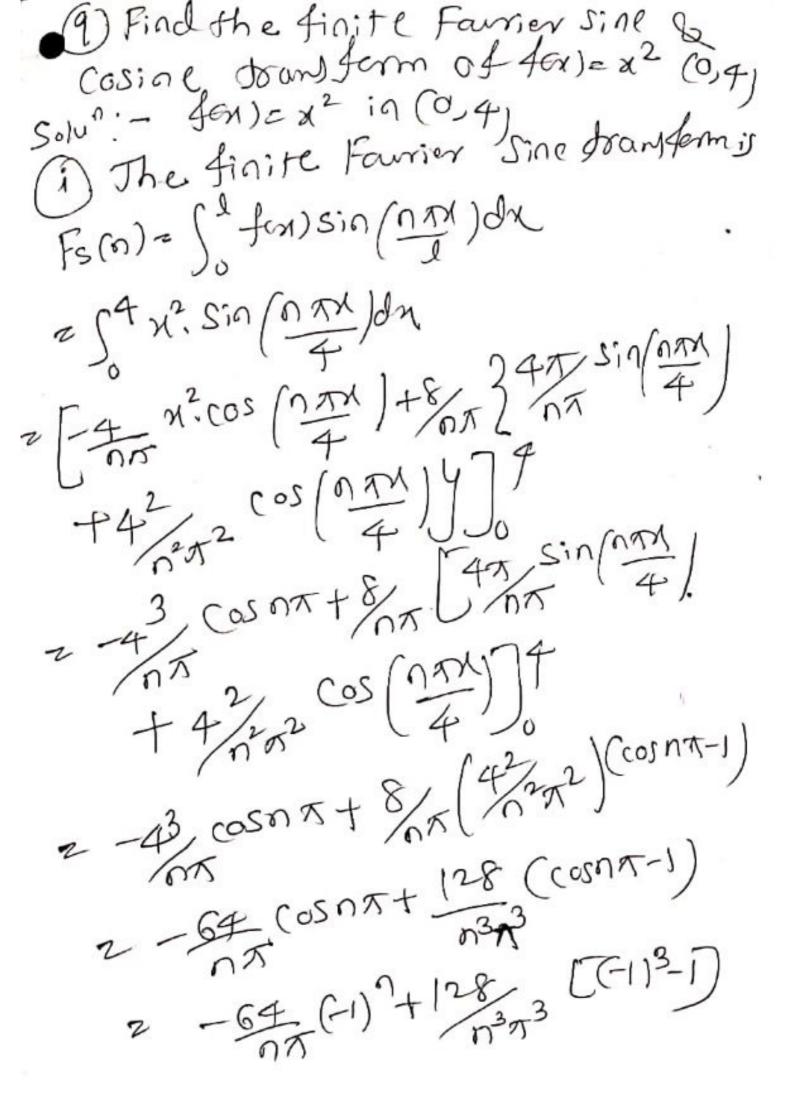
Fourier Transformationy. Example. (1) Find the finite Fourier Sine & cosine Jeansformations of fen) 21 in (9,1) Solun: (i) frx = 1 in (0,0), the finite Sine Asay for motion is. Fs(n)2 Se fox) Sin (nxx) dx 2 5 1. Sin (n 78/) DN = [- cos (nm)] = -[2 cos (nm)]. 2 [2 COS NT] 2 - [2 (GI) - /7) 2 -1/2-1) (ii) fexter in (0,1) the finite cosine transformation is transformation is Fe(n)2 Sofen) cos (non John Fe(n)2 Sofen) 2 5° 1. cos(000) dn 2 sin(000).

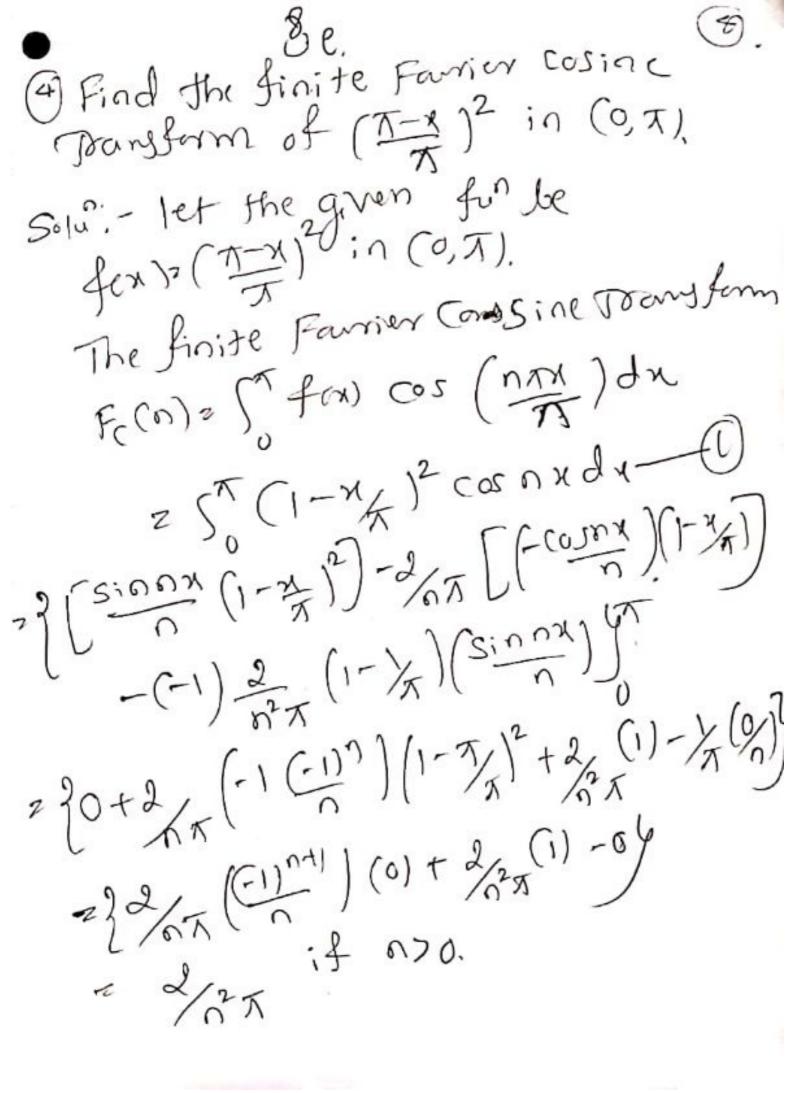

= [1/2 Sin (nm)] 2 [/ Sin (n//)) = 2/2n/(0) = 0 Fc(n)20. 2) Find the Pinite Fourier Sine Harsformation of f(n) 21 in (0, T). The finite Fourier Sine Asomsform Solun: - f(n)=1 in (0,T) F5(n)= 50 f(n) Sin(n) dx 250 1.5:00 ndn 2 [-cosning = [-cosnin +/] Fs(n), 2 × 21-6-11) Y




2 [0-0+ 1/2 22 [-11]-1]




(ii) The finite Fourier Casine Transform Fc(n)= Sear cos (nxxx) dn $= \left[\frac{e^{\alpha \chi}}{\alpha^2 + n^2 \chi^2} \left(\alpha \cos \left(\frac{n \chi}{\sigma} \right) + n \chi \sin \left(\frac{n \chi}{\sigma} \right) \right]$) 1 e as a (a(-11) + 6) - 1 e (ato) a 2 2 2 pn 2 2 (ato) e (ax(-1)^-



(ii) The finite Fourier Cosine drangfor Fc(n) 2 Stran) cos (nom John 254 x2. cos (1/1)du 2 [N2. SIN() - 8/7 (- N(0)()) 2 (x25:00x) -8/x (-4/cos n/x) +42 sin n/x 0 - 120 (05) Z (28 (-1)".

Find the finite Farrier Cosince

Bansform of (T-x)² in (0, T). Solu: - let the given for be fex > (TX) in (0, T). The finite Farrier Comsine Townsform F(n) = 5 f(x) cos (nm) du 25 (1-xx)2 cos nxdx-(1) 29 [Sinon (1-4)]-2/2 [(-conx)(1-1/4)] -(-1) 2 (1-/x) (sinox) (s) 2 20+2/x(-1 (-1)) (1-7/2+2/2) 2/2/((i) -0/2/(i) -0/

If n=0 Then Fc(0)= 5 (1-4)2 ((05 0.2) d4 = [3(1-1/4)3(-1/4)], T 2一场[(1-3/4]] Fc(0)2 T/3./1 Bige Cosial from formation Jollo. 2) in (0,2) Fcn2 52(2-1) cos(2) \$ 2 (F1) -1) $F_S(n)_2$ $\int_0^2 (\chi-1) Sin \left(\frac{n\pi}{2}\right) d\mu$ マ ペイ [1-チリリ]